OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 3996–4001

Dual-wavelength step-like pulses in an ultra-large negative-dispersion fiber laser

Dong Mao, Xueming Liu, Leiran Wang, Hua Lu, and Lina Duan  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 3996-4001 (2011)
http://dx.doi.org/10.1364/OE.19.003996


View Full Text Article

Enhanced HTML    Acrobat PDF (1043 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on experimental observation of dual-wavelength step-like pulses delivered from an erbium-doped fiber laser operating in ultra-large negative-dispersion regime. The step-like pulses consist of two rectangular pulses with different energies, durations as well as optical spectra, and are distinct from the conventional multi-solitons or bound-state solitons in that each pulse holds the same property. We find the weaker (or stronger) rectangular pulse in step-like pulses is more sensitive to the backward (or forward) pump while is less sensitive to the forward (or backward) pump. Our results demonstrate that the dual-wavelength operation results from the combination of fiber dispersion, fiber birefringence, as well as cavity filtering effect, and the intensity difference between rectangular pulses can be attributed to different gain characteristics of the forward and backward pump.

© 2011 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 14, 2010
Revised Manuscript: January 26, 2011
Manuscript Accepted: January 30, 2011
Published: February 15, 2011

Citation
Dong Mao, Xueming Liu, Leiran Wang, Hua Lu, and Lina Duan, "Dual-wavelength step-like pulses in an ultra-large negative-dispersion fiber laser," Opt. Express 19, 3996-4001 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-3996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Lou, T. F. Carruthers, and M. Currie, “4×10 GHz Mode-Locked Multiple-Wavelength Fiber Laser,” IEEE Photon. Technol. Lett. 16(1), 51–53 (2004). [CrossRef]
  2. J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, “Dual-wavelength self-mode-locked Ti:sapphire laser,” Opt. Lett. 18(13), 1074–1076 (1993). [CrossRef] [PubMed]
  3. L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010). [CrossRef]
  4. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010). [CrossRef]
  5. S. Yamashita and K. Hotate, “Distributed pressure sensor with a mode-locked fiber-ring laser,” Opt. Lett. 26(9), 590–592 (2001). [CrossRef]
  6. D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011). [CrossRef]
  7. J. M. Sousa and O. G. Okhotnikov, “Multiple Wavelength Q-Switched Fiber Laser,” IEEE Photon. Technol. Lett. 11(9), 1117–1119 (1999). [CrossRef]
  8. D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively Mode-Locked Tunable Dual-Wavelength Erbium-Doped Fiber Laser,” Photon. Technol. Lett. 14(2), 143–145 (2002). [CrossRef]
  9. G. E. Town, L. Chen, and P. W. E. Smith, “Dual Wavelength Mode-locked Fiber Laser,” IEEE Photon. Technol. Lett. 12(11), 1459–1461 (2000). [CrossRef]
  10. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010). [CrossRef] [PubMed]
  11. J. B. Schlager, S. Kawanlshi, and M. Saruwatari, “Dual-wavelength pulse generation using mode-locked erbium-doped fiber ring laser,” Electron. Lett. 27(22), 2072–2073 (1991). [CrossRef]
  12. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009). [CrossRef] [PubMed]
  13. M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Askins, and E. J. Friebele, “Broadband square-pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23(2), 138–140 (1998). [CrossRef]
  14. J. H. Lee, L. K. Oxenløwe, M. Ibsen, K. S. Berg, A. T. Clausen, D. J. Richardson, and P. Jeppesen, “All-Optical TDM Data Demultiplexing at 80 Gb/s With Significant Timing Jitter Tolerance Using a Fiber Bragg Grating Based Rectangular Pulse Switching Technology,” J. Lightwave Technol. 21(11), 2518–2523 (2003). [CrossRef]
  15. S. Cialdi, I. Boscolo, and A. Flacco, “Features of a phase-only shaper set for a long rectangular pulse,” J. Opt. Soc. Am. B 21(9), 1693–1698 (2004). [CrossRef]
  16. K. Iwashita, K. Nakagawa, Y. Nakano, and Y. Suzuki, “Chirped pulse transmission through a single mode fiber,” Electron. Lett. 18(20), 873–874 (1982). [CrossRef]
  17. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular Pulse Generation Based on Pulse Reshaping Using a Superstructured Fiber Bragg Grating,” J. Lightwave Technol. 19(5), 746–752 (2001). [CrossRef]
  18. M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 mum by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26(20), 1615–1617 (2001). [CrossRef]
  19. X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010). [CrossRef]
  20. X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82(5), 053808 (2010). [CrossRef]
  21. D. Mao, X. M. Liu, L. R. Wang, and H. Lu, “Experimental investigation of square dissipative soliton generation and propagation,” Appl. Opt. 49(25), 4751–4755 (2010). [CrossRef] [PubMed]
  22. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009). [CrossRef] [PubMed]
  23. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008). [CrossRef]
  24. W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009). [CrossRef]
  25. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997). [CrossRef]
  26. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15(2), 515–523 (1998). [CrossRef]
  27. H. W. Xu, D. J. Lei, S. Wen, X. Fu, J. Zhang, Y. Shao, L. Zhang, H. Zhang, and D. Fan, “Observation of central wavelength dynamics in erbium-doped fiber ring laser,” Opt. Express 16(10), 7169–7174 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig 1. Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited