OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4017–4029

Focusing light through random photonic media by binary amplitude modulation

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4017-4029 (2011)
http://dx.doi.org/10.1364/OE.19.004017


View Full Text Article

Enhanced HTML    Acrobat PDF (905 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the focusing of light through random photonic materials using wavefront shaping. We explore a novel approach namely binary amplitude modulation. To this end, the light incident to a random photonic medium is spatially divided into a number of segments. We identify the segments that give rise to fields that are out of phase with the total field at the intended focus and assign these a zero amplitude, whereas the remaining segments maintain their original amplitude. Using 812 independently controlled segments of light, we find the intensity at the target to be 75±6 times enhanced over the average intensity behind the sample. We experimentally demonstrate focusing of light through random photonic media using both an amplitude only mode liquid crystal spatial light modulator and a MEMS-based spatial light modulator. Our use of Micro Electro-Mechanical System (MEMS)-based digital micromirror devices for the control of the incident light field opens an avenue to high speed implementations of wavefront shaping.

© 2011 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(110.7050) Imaging systems : Turbid media
(290.4210) Scattering : Multiple scattering

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: January 3, 2011
Manuscript Accepted: February 4, 2011
Published: February 15, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, "Focusing light through random photonic media by binary amplitude modulation," Opt. Express 19, 4017-4029 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4017


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. M. Vellekoop, and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [PubMed]
  2. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008). [PubMed]
  3. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
  4. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008). [PubMed]
  5. M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18, 25–30 (2010). [PubMed]
  6. M. Cui, and C. Yang, “Implementation of a digital optical phase conjugation system and its application to turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010). [PubMed]
  7. C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010). [PubMed]
  8. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [PubMed]
  9. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
  10. D. Dudley, W. Duncan, and J. Slaughter, “Emerging Digital Micromirror Device (DMD) Applications,” Proc. SPIE 4985, 14 (2003).
  11. C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997).
  12. J. W. Goodman, Statistical optics (Wiley, New York, 2000).
  13. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, 2003).
  14. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008). [PubMed]
  15. A. Derode, A. Tourin, and M. Fink, “Ultrasonic pulse compression with one-bit time reversal through multiple scattering,” J. Appl. Phys. 85, 6343–6352 (1999).
  16. F. van Beijnum, and M. Sc, Thesis, University of Twente (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited