OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4047–4058

Soret effect and photochemical reaction in liquids with laser-induced local heating

L. C. Malacarne, N. G. C. Astrath, A. N. Medina, L. S. Herculano, M. L. Baesso, P. R. B. Pedreira, J. Shen, Q. Wen, K. H. Michaelian, and C. Fairbridge  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4047-4058 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a theoretical model and experimental results for laser-induced local heating in liquids, and propose a method to detect and quantify the contributions of photochemical and Soret effects in several different situations. The time-dependent thermal and mass diffusion equations in the presence and absence of laser excitation are solved. The two effects can produce similar transients for the laser-on refractive index gradient, but very different laser-off behavior. The Soret effect, also called thermal diffusion, and photochemical reaction contributions in photochemically reacting aqueous Cr(VI)-diphenylcarbazide, Eosin Y, and Eosin Y-doped micellar solutions, are decoupled in this work. The extensive use of lasers in various optical techniques suggests that the results may have significance extending from physical-chemical to biological applications.

© 2011 Optical Society of America

OCIS Codes
(350.5340) Other areas of optics : Photothermal effects
(350.6830) Other areas of optics : Thermal lensing

ToC Category:

Original Manuscript: January 13, 2011
Revised Manuscript: February 2, 2011
Manuscript Accepted: February 3, 2011
Published: February 15, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

L. C. Malacarne, N. G. C. Astrath, A. N. Medina, L. S. Herculano, M. L. Baesso, P. R. B. Pedreira, J. Shen, Q. Wen, K. H. Michaelian, and C. Fairbridge, "Soret effect and photochemical reaction in liquids with laser-induced local heating," Opt. Express 19, 4047-4058 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Soret, “Concentrations differentes d’une dissolution dont deux parties sont a’ des temperatures differentes,” Arch. Sci. Phys. Nat. 2, 48–61 (1879).
  2. B. J. deGans, R. Kita, S. Wiegand, and J. Luettmer-Strathmann, “Unusual thermal diffusion in polymer solutions,” Phys. Rev. Lett. 91, 245501 (2003). [CrossRef]
  3. A. Würger, “Molecular-weight dependent thermal diffusion in dilute polymer solutions,” Phys. Rev. Lett. 102, 078302 (2009). [CrossRef] [PubMed]
  4. R. Piazza and A. Guarino, “Soret effect in interacting micellar solutions,” Phys. Rev. Lett. 88, 208302 (2002). [CrossRef] [PubMed]
  5. R. Rusconi, L. Isa, and R. Piazza, “Thermal-lensing measurement of particle thermophoresis in aqueous dispersions,” J. Opt. Soc. Am. B 21, 605–616 (2004). [CrossRef]
  6. S. N. Rasuli and R. Golestanian, “Soret motion of a charged spherical colloid,” Phys. Rev. Lett. 101, 108301 (2008). [CrossRef] [PubMed]
  7. J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, “Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 031408 (2002). [CrossRef]
  8. B. Hoffmann, W. Köhler, and M. Krekhova, “On the mechanism of transient bleaching of the optical absorption of ferrofluids and dyed liquids,” J. Chem. Phys. 118, 3237–3242 (2003). [CrossRef]
  9. S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics (North Holland, 1962)
  10. F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010). [CrossRef]
  11. M. Giglio and A. Vendramini, “Thermal-diffusion measurements near a consolute critical-point,” Phys. Rev. Lett. 34, 561–564 (1975). [CrossRef]
  12. C. Debuschewitz and W. K¨ohler, “Molecular origin of thermal diffusion in benzene plus cyclohexane mixtures,” Phys. Rev. Lett. 87, 055901 (2001). [CrossRef] [PubMed]
  13. P. A. Artola and B. Rousseau, “Microscopic interpretation of a pure chemical contribution to the Soret effect,” Phys. Rev. Lett. 98, 125901 (2007). [CrossRef] [PubMed]
  14. D. Jung and M. Lücke, “Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong Soret effect,” Phys. Rev. Lett. 89, 054502 (2002). [CrossRef] [PubMed]
  15. K. I. Morozov, “Soret effect in molecular mixtures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 031204 (2009). [CrossRef]
  16. A. Parola and R. Piazza, “Particle thermophoresis in liquids,” Eur. Phys. J. E 15, 255–263 (2004). [CrossRef] [PubMed]
  17. N. Ghofraniha, C. Conti, G. Ruocco, and F. Zamponi, “Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material,” Phys. Rev. Lett. 102, 038303 (2009). [CrossRef] [PubMed]
  18. S. Fayolle, T. Bickel, S. LeBoiteux, and A. Würger, “Thermodiffusion of charged micelles,” Phys. Rev. Lett. 95, 208301 (2005). [CrossRef] [PubMed]
  19. S. Duhr, and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96, 168301 (2006). [CrossRef] [PubMed]
  20. S. A. Putnam, D. G. Cahil, and G. C. L. Wong, “Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles,” Langmuir 23, 9221–9228 (2007). [CrossRef] [PubMed]
  21. R. Piazza, “Thermophoresis: moving particles with thermal gradients,” Soft Matter 4, 1740–1744 (2008). [CrossRef]
  22. D. Vigolo, S. Buzzaccaro, and R. Piazza, “Thermophoresis and thermoelectricity in surfactant solutions,” Langmuir 26, 7792–7801 (2010). [CrossRef] [PubMed]
  23. D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002). [CrossRef] [PubMed]
  24. S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97, 038103 (2006). [CrossRef] [PubMed]
  25. M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99, 148104 (2007). [CrossRef] [PubMed]
  26. N. Arnaud and J. Georges, “Thermal lens spectrometry in aqueous solutions of Brij 35: investigation of micelle effects on the time-resolved and steady-state signals,” Spectrochim. Acta [A] 57, 1085–1092 (2001). [CrossRef]
  27. P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006). [CrossRef]
  28. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009). [CrossRef] [PubMed]
  29. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009). [CrossRef]
  30. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992). [CrossRef]
  31. M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperaturecoefficient of optical-path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994). [CrossRef]
  32. N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005). [CrossRef]
  33. S. Hazebroucq, F. Labat, D. Lincot, and C. Adamo, “Theoretical insights on the electronic properties of eosin Y, an organic dye for photovoltaic applications,” J. Phys. Chem. A 112, 7264–7270 (2008). [CrossRef] [PubMed]
  34. N. Arnaud and J. Georges, “On the analytical use of the Soret-enhanced thermal lens signal in aqueous solutions,” Anal. Chim. Acta 445, 239–244 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited