OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4059–4066

Comparative study of Laser induce damage of HfO2/SiO2 and TiO2/SiO2 mirrors at 1064 nm

Hongfei Jiao, Tao Ding, and Qian Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4059-4066 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (886 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A comparative study of laser induced damage of HfO2/SiO2 and TiO2/SiO2 mirrors at 1064 nm has been carried out. One TiO2/SiO2 mirror with absorption of 300 ppm and two HfO2/SiO2 mirrors with absorption of 40 and 4.5 ppm were fabricated using electron beam evaporation method. For r-on-1 test, all HfO2/SiO2 mirrors with low average absorption are above 150 J/cm2 at 10ns. However, the TiO2/SiO2 mirrors with high average absorption are just 9.5 J/cm2, which are probably due to the rather high absorption and rather low band gap energy. Meanwhile, all the samples were irradiated from front and back side respectively using the raster scan test mode. In case of front side irradiation, it is found that: for TiO2/SiO2 high reflectors, the representative damage morphologies are shallow pits that were probably caused by absorbing centers. However, for HfO2/SiO2 high reflectors, the dominant damage morphologies are micrometer-sized nodules ejected pits and the delamination initiating from the pits. The absorption of HfO2/SiO2 coatings is low enough to have minor influence on the laser damage resistance. In case of backside irradiation, the morphology of TiO2/SiO2 mirrors is mainly center melted pits that are thermal melting induced damage. Meanwhile, HfO2/SiO2 mirrors with isometrical fracture rings damage morphology are thermal induced stress damage.

© 2011 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: January 13, 2011
Revised Manuscript: February 2, 2011
Manuscript Accepted: February 3, 2011
Published: February 15, 2011

Hongfei Jiao, Tao Ding, and Qian Zhang, "Comparative study of Laser induce damage of HfO2/SiO2 and TiO2/SiO2 mirrors at 1064 nm," Opt. Express 19, 4059-4066 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J Griffin, M. D. Thomas, “Improved method for laser damage testing coated optics”, Proc. SPIE 5991, 59912A1 (2005)
  2. F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996). [CrossRef]
  3. M. R. Kozlowski, “Ri. Tench, R. Chow, L. Sheehan, “Influence of defect shape on laser induced damage in multilayer coatings,” Proc. SPIE 2253, 743–750 (1994). [CrossRef]
  4. J. C. Stolz, J. Adams, M. D. Shirk, M. A. Norton, and T. L. Weiland, “Engineering meter-scale laser resistant coatings for the near IR”, Proc. SPIE 5963, 59630Y1–9 (2005)
  5. J. Christopher, Stolz, Michael D. Thomas and Andrew J. Griffin, “BDS thin film damage competition”, Proc. SPIE 7132, 71320C1 (2008)
  6. J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004). [CrossRef]
  7. M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649 (1994). [CrossRef]
  8. C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1995). [CrossRef]
  9. S. Papernov, and A. W. Schmid, “Laser-induced surface damage of optical materials: Absorption sources, initiation, growth, and mitigation”, Proc. SPIE 7132, 71321J1 (2008)
  10. E. Welsch and D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34(31), 7239–7253 (1995). [CrossRef] [PubMed]
  11. J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–325 (1997). [CrossRef]
  12. L. Jensen, M. Jupé, and D. Ristau, “UV damage mechanisms in oxide high reflectors,” Proc. SPIE 7132, 71320G, 71320G-12 (2008). [CrossRef]
  13. S. papernov, A. W. Schmid, J. B. Oliver, and A. L. Rigatti, “Damage threshold and morphology of the front- and back-irradiated SiO2 thin films containing gold nanoparticles as artificial absorbing defects,” Proc. SPIE 6720, 67200G (2007). [CrossRef]
  14. J. Hue, P. Garrec, J. Dijon, and P. Lyan, “R-on-1 automatic mapping: a new tool for laser damage testing,” Proc. SPIE 2714, 90–101 (1996). [CrossRef]
  15. M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics”, Proc. SPIE 5991, 59912A1 (2005)
  16. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005). [CrossRef]
  17. F. Y. Genin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2-SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997). [CrossRef]
  18. J.-Y. Natoli, F. Wagner, A. Ciapponi, S. Palmier, L. Gallais, and M. Commandré, “Non destructive evaluation on optical components for high power density applications,” Proc. SPIE 7101, 710118 (2008). [CrossRef]
  19. X. Cheng, Z. Shen, H. Jiao, J. Zhang, B. Ma, T. Ding, and Z. Wang, “Laser damage resistance of dichroic mirrors at 532 nm and 1064nm,” Proc. SPIE 7842, 78420C, 78420C-8 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited