OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4101–4112

Characteristics of exciton-polaritons in ZnO-based hybrid microcavities

Jun-Rong Chen, Tien-Chang Lu, Yung-Chi Wu, Shiang-Chi Lin, Wen-Feng Hsieh, Shing-Chung Wang, and Hui Deng  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4101-4112 (2011)
http://dx.doi.org/10.1364/OE.19.004101


View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wide bandgap semiconductors are promising materials for the development of polariton-based optoelectronic devices operating at room temperature (RT). We report the characteristics of ZnO-based microcavities (MCs) in the strong coupling regime at RT with a vacuum Rabi splitting of 72 meV. The impact of scattering states of excitons on polariton dispersion is investigated. Only the lower polariton branches (LPBs) can be clearly observed in ZnO MCs since the large vacuum Rabi splitting pushes the upper polariton branches (UPBs) into the scattering absorption states in the ZnO bulk active region. In addition, we systematically investigate the polariton relaxation bottleneck in bulk ZnO-based MCs. Angle-resolved photoluminescence measurements are performed from 100 to 300 K for different cavity-exciton detunings. A clear polariton relaxation bottleneck is observed at low temperature and large negative cavity detuning conditions. The bottleneck is suppressed with increasing temperature and decreasing detuning, due to more efficient phonon-assisted relaxation and a longer radiative lifetime of the polaritons.

© 2011 OSA

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 29, 2010
Revised Manuscript: January 3, 2011
Manuscript Accepted: January 30, 2011
Published: February 16, 2011

Citation
Jun-Rong Chen, Tien-Chang Lu, Yung-Chi Wu, Shiang-Chi Lin, Wen-Feng Hsieh, Shing-Chung Wang, and Hui Deng, "Characteristics of exciton-polaritons in ZnO-based hybrid microcavities," Opt. Express 19, 4101-4112 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4101


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002). [CrossRef] [PubMed]
  3. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006). [CrossRef] [PubMed]
  5. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009). [CrossRef] [PubMed]
  6. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008). [CrossRef]
  7. S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453(7193), 372–375 (2008). [CrossRef] [PubMed]
  8. M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414(6865), 731–735 (2001). [CrossRef] [PubMed]
  9. I. R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, and A. A. Khalifa, “Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature,” Phys. Rev. B 74(19), 193308 (2006). [CrossRef]
  10. E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89(7), 071107 (2006). [CrossRef]
  11. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009). [CrossRef]
  12. D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999). [CrossRef]
  13. S. Christopoulos, G. B. H. Von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007). [CrossRef] [PubMed]
  14. R. Butté, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean, “Room-temperature polariton luminescence from a bulk GaN microcavity,” Phys. Rev. B 73(3), 033315 (2006). [CrossRef]
  15. F. Stokker-Cheregi, A. Vinattieri, F. Semond, M. Leroux, I. R. Sellers, J. Massies, D. Solnyshkov, G. Malpuech, M. Colocci, and M. Gurioli, “Polariton relaxation bottleneck and its thermal suppression in bulk GaN microcavities,” Appl. Phys. Lett. 92(4), 042119 (2008). [CrossRef]
  16. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B 70(19), 195207 (2004). [CrossRef]
  17. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002). [CrossRef]
  18. R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008). [CrossRef]
  19. R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoç, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008). [CrossRef]
  20. F. Médard, J. Zúñiga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. C. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B 79(12), 125302 (2009). [CrossRef]
  21. S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, D. Lagarde, P. Disseix, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, E. Frayssinet, J. C. Moreno, F. Semond, and S. Bouchoule, “Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature,” Appl. Phys. Lett. 95(12), 121102 (2009). [CrossRef]
  22. R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008). [CrossRef]
  23. C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, “Observation of strong exciton–photon coupling at temperatures up to 410 K,” N. J. Phys. 11(7), 073044 (2009). [CrossRef]
  24. S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008). [CrossRef]
  25. J.-R. Chen, S.-C. Ling, C.-T. Hung, T.-S. Ko, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, “High-reflectivity ultraviolet AlN/AlGaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 310(23), 4871–4875 (2008). [CrossRef]
  26. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater. 4(1), 42–46 (2005). [CrossRef]
  27. R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, “Photoluminescence measurements from the two polar faces of ZnO,” J. Appl. Phys. 88(6), 3454 (2000). [CrossRef]
  28. S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase,” Appl. Phys. Lett. 80(11), 1924–1926 (2002). [CrossRef]
  29. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996). [CrossRef]
  30. Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,” J. Appl. Phys. 84(7), 3912–3918 (1998). [CrossRef]
  31. E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, “Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD,” Appl. Surf. Sci. 186(1-4), 474–476 (2002). [CrossRef]
  32. N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, “Observation of Rabi splitting in a bulk GaN microcavity grown on silicon,” Phys. Rev. B 68(15), 153313 (2003). [CrossRef]
  33. M. Mihailovic, A. L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zúñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater. 31(3), 532–536 (2009). [CrossRef]
  34. S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, “Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal,” J. Appl. Phys. 93(1), 756–758 (2003). [CrossRef]
  35. S. L. Chuang, Physics of Optoelectronic Devices, 1st ed. (Wiley, 1995)
  36. G. E. Jellison and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58(7), 3586–3589 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited