OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4140–4146

Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer

Bobo Gu, Mingjie Yin, A. Ping Zhang, Jinwen Qian, and Sailing He  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4140-4146 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new fiber-optic relative humidity (RH) sensor based on a thin-core fiber modal interferometer (TCFMI) with a fiber Bragg grating (FBG) in between is presented. Poly (N-ethyl-4-vinylpyridinium chloride) (P4VP·HCl) and poly (vinylsulfonic acid, sodium salt) (PVS) are layer-by-layer deposited on the side surface of the sensor for RH sensing. The fabrication of the sensing nanocoating is characterized by using UV-vis absorption spectroscopy, quartz crystal microbalance (QCM) and scanning electron microscopy (SEM). The incorporation of FBG in the middle of TCFMI can compensate the cross sensitivity of the sensor to temperature. The proposed sensor can detect the RH with resolution of 0.78% in a large RH range at different temperatures. A linear, fast and reversible response has been experimentally demonstrated.

© 2011 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:

Original Manuscript: January 10, 2011
Revised Manuscript: February 10, 2011
Manuscript Accepted: February 10, 2011
Published: February 16, 2011

Bobo Gu, Mingjie Yin, A. Ping Zhang, Jinwen Qian, and Sailing He, "Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer," Opt. Express 19, 4140-4146 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuators B Chem. 25(1–3), 681–685 (1995). [CrossRef]
  2. Y. Sakai, M. Matsuguchi, and T. Hurukawa, “Humidity sensor using cross-linked poly(chloromethyl styrene),” Sens. Actuators B Chem. 66(1–3), 135–138 (2000). [CrossRef]
  3. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008). [CrossRef] [PubMed]
  4. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys. 144(2), 280–295 (2008). [CrossRef]
  5. Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurements,” Anal. Chem. 60(20), 2317–2320 (1988). [CrossRef]
  6. B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001). [CrossRef]
  7. T. E. Brook, M. N. Taib, and R. Narayanaswamy, “Extending the range of a fibre-optic relative-humidity sensor,” Sens. Actuators B Chem. 39(1–3), 272–276 (1997). [CrossRef]
  8. K. Ogawa, S. Tsuchiya, H. Kawakami, and T. Tsutsui, “Humidity-sensing effects of optical fibres with microporous SiO2 cladding,” Electron. Lett. 24(1), 42–43 (1988). [CrossRef]
  9. L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Opt. Lett. 29(11), 1191–1193 (2004). [CrossRef] [PubMed]
  10. H. E. Posch and O. S. Wolfbeis, “Fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988). [CrossRef]
  11. M. M. F. Choi and O. L. Tse, “Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film,” Anal. Chim. Acta 378(1–3), 127–134 (1999). [CrossRef]
  12. S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel, “Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane,” Anal. Chim. Acta 448(1–2), 1–8 (2001). [CrossRef]
  13. O. McGaughey, J. V. Ros-Lis, A. Guckian, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Development of a fluorescence lifetime-based sol–gel humidity sensor,” Anal. Chim. Acta 570(1), 15–20 (2006). [CrossRef]
  14. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005). [CrossRef]
  15. X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007). [CrossRef]
  16. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27(16), 1385–1387 (2002). [CrossRef]
  17. Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007). [CrossRef]
  18. J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. NanoTechnol. 7(4), 394–400 (2008). [CrossRef]
  19. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003). [CrossRef]
  20. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005). [CrossRef]
  21. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24(11), 4329–4336 (2006). [CrossRef]
  22. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-13349 . [CrossRef] [PubMed]
  23. F. Mitschke, “Fiber-optic sensor for humidity,” Opt. Lett. 14(17), 967–969 (1989). [CrossRef] [PubMed]
  24. F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method,” Sens. Actuators B Chem. 59(1), 54–59 (1999). [CrossRef]
  25. T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010). [CrossRef]
  26. B. Gu, M.-J. Yin, A. P. Zhang, J.-W. Qian, and S. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17(25), 22296–22302 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-25-22296 . [CrossRef]
  27. P. Zhang, J. W. Qian, Q. F. An, B. Y. Du, X. Q. Liu, and Q. Zhao, “Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts,” Langmuir 24(5), 2110–2117 (2008). [CrossRef] [PubMed]
  28. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997). [CrossRef]
  29. G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Z. Phys. 155(2), 206–222 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited