OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4170–4181

Optimization of image recording distances for quantitative X-ray in-line phase contrast imaging

Yuqi Ren, Can Chen, Rongchang Chen, Guangzhao Zhou, Yudan Wang, and Tiqiao Xiao  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4170-4181 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compared to phase retrieval from single sample-to-detector distance (SDD) image, phase retrieval with multiple SDD images could improve the precision in quantitative X-ray in-line phase contrast imaging (QXIPCI). Among all the related phase retrieval approaches, the two-SDD-image-based one is the simplest and well compromises between precision and dose. However, how to optimize the recording distances for the two images to achieve highest precision, remains unsolved. In this paper, the problem was investigated systematically based on digital simulation and related experiments. Spectral correlation degree (SCD) is introduced to evaluate the pertinence between the two SDD images. The simulation results show that the highest retrieving precision could be obtained while the SDD of the second image is three times that of the first image. The best retrieval could be achieved when SDD of the first image is selected properly, meanwhile the SCD occurs with a typical damping oscillation. Experiments, carried out at the X-ray imaging beamline of SSRF, demonstrated the simulation results.

© 2011 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

Original Manuscript: October 27, 2010
Revised Manuscript: December 13, 2010
Manuscript Accepted: December 23, 2010
Published: February 17, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Yuqi Ren, Can Chen, Rongchang Chen, Guangzhao Zhou, Yudan Wang, and Tiqiao Xiao, "Optimization of image recording distances for quantitative X-ray in-line phase contrast imaging," Opt. Express 19, 4170-4181 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. De Caro, F. Scattarella, C. Giannini, S. Tangaro, L. Rigon, R. Longo, and R. Bellotti, “Combined mixed approach algorithm for in-line phase-contrast x-ray imaging,” Med. Phys. 37(7), 3817–3827 (2010). [CrossRef] [PubMed]
  2. T. Xiao, A. Bergamaschi, D. Dreossi, R. Longo, A. Olivo, S. Pani, L. Rigon, T. Rokvic, C. Venanzi, and E. Castelli, “Effect of spatial coherence on application of in-line phase contrast imaging to synchrotron radiation mammography,” Nucl. Instrum. Meth. A 548(1-2), 155–162 (2005). [CrossRef]
  3. H. Ikeura-Sekiguchi, R. Kuroda, M. Yasumoto, H. Toyokawa, M. Koike, K. Yamada, F. Sakai, K. Mori, K. Maruyama, H. Oka, and T. Kimata, “In-line phase-contrast imaging of a biological specimen using a compact laser-Compton scattering-based x-ray source,” Appl. Phys. Lett. 92(13), 131107 (2008). [CrossRef]
  4. L. De Caro, A. Cedola, C. Giannini, I. Bukreeva, and S. Lagomarsino, “In-line phase-contrast imaging for strong absorbing objects,” Phys. Med. Biol. 53(22), 6619–6637 (2008). [CrossRef] [PubMed]
  5. B. Chen, P. Zhu, C. Chen, H. Shu, Y. Liu, Q. Yuan, J. Wang, W. Huang, H. Ming, and Z. Wu, “Theory and experiment of in-line phase contrast imaging on non-uniformly distributed source,” Spectrochim. Acta. B 62(6-7), 636–641 (2007). [CrossRef]
  6. Y. S. Kashyap, P. S. Yadav, T. Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based X-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot. 66(8), 1083–1090 (2008). [CrossRef] [PubMed]
  7. S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval of improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008). [CrossRef]
  8. P. Cloetens, M. Pateyron-Salome, J. Y. Buffiere, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997). [CrossRef]
  9. J. Y. Chen, D. J. Bottjer, G. Li, M. G. Hadfield, F. Gao, A. R. Cameron, C. Y. Zhang, D. C. Xian, P. Tafforeau, X. Liao, and Z. J. Yin, “Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng’an, Guizhou, China,” Proc. Natl. Acad. Sci. U.S.A. 106(45), 19056–19060 (2009). [CrossRef] [PubMed]
  10. X. Wei, T. Q. Xiao, L. X. Liu, G. H. Du, M. Chen, Y. Y. Luo, and H. J. Xu, “Application of x-ray phase contrast imaging to microscopic identification of Chinese medicines,” Phys. Med. Biol. 50(18), 4277–4286 (2005). [CrossRef] [PubMed]
  11. J. E. Adams, “Quantitative computed tomography,” Eur. J. Radiol. 71(3), 415–424 (2009). [CrossRef] [PubMed]
  12. N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71(1), 5–10 (2008). [CrossRef]
  13. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  14. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  15. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133(1-6), 339–346 (1997). [CrossRef]
  16. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002). [CrossRef] [PubMed]
  17. M. Langer, P. Cloetens, J. P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35(10), 4556–4566 (2008). [CrossRef] [PubMed]
  18. L.D. Turner, B. B. Dhal, J. P. Hayes, A. P. Mancuso, K. A. Nugent, D. Paterson, R. E. Scholten, C. Q. Tran, and A. G. Peele, “X-ray phase imaging: Demonstration of extended conditions for homogeneous objects,” Opt. Express 12(13), 2960–2965 (2004). [CrossRef] [PubMed]
  19. J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32(12), 1617–1619 (2007). [CrossRef] [PubMed]
  20. T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004). [CrossRef]
  21. T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first Born- and Rytov-type approximations,” Appl. Opt. 43(12), 2418–2430 (2004). [CrossRef] [PubMed]
  22. M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18(7), 6423–6436 (2010). [CrossRef] [PubMed]
  23. D. M. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234(1-6), 87–105 (2004). [CrossRef]
  24. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983). [CrossRef]
  25. C. Y. Chou, Y. Huang, D. Shi, and M. A. Anastasio, “Image reconstruction in quantitative X-ray phase-contrast imaging employing multiple measurements,” Opt. Express 15(16), 10002–10025 (2007). [CrossRef] [PubMed]
  26. C. Y. Chou and M. A. Anastasio, “Influence of imaging geometry on noise texture in quantitative in-line X-ray phase-contrast imaging,” Opt. Express 17(17), 14466–14480 (2009). [CrossRef] [PubMed]
  27. D. Paganin, A. Barty, P. J. Mcmahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effect of noise,” J. Microsc. 214(1), 51–61 (2004). [CrossRef] [PubMed]
  28. M. Born, and E. Wolf, Principles of Optics: ElectromagneticTheory of Propagation, Interference and Diffraction of Light (Cambridge UniversityPress, 1999).
  29. O. K. Ersoy, Diffraction, Fourier Optics and Imaging (John Wiley& Sons, Inc., 2006).
  30. A. N. Tikhonov and V. Y. Arsenin, “Solutions of Ill-posed Problems,” SIAM Rev. 21(2), 266–267 (1979). [CrossRef]
  31. A. Groso, R. Abela, and M. Stampanoni, “Implementation of a fast method for high resolution phase contrast tomography,” Opt. Express 14(18), 8103–8110 (2006). [CrossRef] [PubMed]
  32. B. L. Henke, E. M. Cullikson, and J. C. Davis, “X-ray interactions: photo absorption, scattering, transmission, and reflection at E=50-30,000eV,Z=1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993). [CrossRef]
  33. L. Mandel and E. Wolf, “Spectral coherence and the concept of cross-spectral purity,” J. Opt. Soc. Am. 66(6), 529–535 (1976). [CrossRef]
  34. J. Bigot, F. Gamboa, and M. Vimond, “Estimation of Translation, Rotation, and Scaling between Noisy Images Using the Fouier-Mellin Transform,” SIAM J. Imaging Sci. 2(2), 614–645 (2009). [CrossRef]
  35. Eastman Kodak Company, “CCD Image sensors noise sources,” Rev. 2.1 (2005).
  36. K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead, “A model for measurement of noise in CCD digital-video cameras,” Meas. Sci. Technol. 19(4), 045207–045211 (2008). [CrossRef]
  37. Y. Zhang and X. Zhang, “Reconstruction of a complex object from two in-line holograms,” Opt. Express 11(6), 572–578 (2003). [CrossRef] [PubMed]
  38. M. S. Nixon, and A. S. Aguado, Feature Extraction and Image Processing (Academic Press, 2008).
  39. R. C. Gonzalez, and R. E. Woods, Digital Image Processing (Pearson Prentice Hall, 2008).
  40. D. Paganin, Coherent X-ray Optics (Oxford University Press, New York, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited