OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4261–4267

VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy

Lew Goldberg, Chris McIntosh, and Brian Cole  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4261-4267 (2011)
http://dx.doi.org/10.1364/OE.19.004261


View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact, passively Q-switched Nd:YAG laser utilizing a Cr4+:YAG saturable absorber, is end-pumped by the focused emission from an 804 nm vertical-cavity surface-emitting laser (VCSEL) array. By changing the VCSEL operating current, we demonstrated 2x adjustability in the laser output pulse energy, from 9 mJ to 18 mJ. This energy variation was attributed to changes in the angular distribution of VCSEL emission with drive current, resulting in a change in the pump intensity distribution generated by a pump-light-focusing lens.

© 2011 OSA

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3540) Lasers and laser optics : Lasers, Q-switched

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 13, 2011
Revised Manuscript: February 11, 2011
Manuscript Accepted: February 11, 2011
Published: February 17, 2011

Citation
Lew Goldberg, Chris McIntosh, and Brian Cole, "VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy," Opt. Express 19, 4261-4267 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903(2009). [CrossRef]
  2. J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808(2008). [CrossRef]
  3. J. A. Morris and C. R. Pollock, “Passive Q switching of a diode-pumped Nd:YAG laser with a saturable absorber,” Opt. Lett. 15(8), 440–442 (1990). [CrossRef] [PubMed]
  4. J. J. Degnan, “Optimization of passively Q-Switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995). [CrossRef]
  5. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+: YAG as Passive Q-Switch and Brewster Plate in a Pulsed Nd: YAG Laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995). [CrossRef]
  6. G. Xiao and M. Bass, “A generalized model for passively Q-switched laser including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33(1), 41–44 (1997). [CrossRef]
  7. Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37(3), 462–468 (2001). [CrossRef]
  8. M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid state lasers,” IEEE J. Quantum Electron. 39(6), 741–748 (2003). [CrossRef]
  9. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shao, M. Jiang, and X. Zhang, “Continuous wave and passively Q-switched laser performance of a Nd-doped mixed crystal Nd:Lu0.5Gd0.5VO4,” Appl. Phys. Lett. 90(23), 231110 (2007). [CrossRef]
  10. J. Li, K. Ueda, J. Dong, M. Musha, and A. Shirakawa, “Maximum value of the pulse energy of a passively Q-switched laser as a function of the pump power,” Appl. Opt. 45(21), 5377–5384 (2006). [CrossRef] [PubMed]
  11. J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. Meng, L. Zhu, L. Qin, C. Du, X. Xu, and Z. Shao, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr41:YAG saturable absorber,” J. Opt. Soc. Am. B 20(4), 652–661 (2003). [CrossRef]
  12. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, Polarization, and Transverse Mode Characteristics of Vertical Cavity Surface Emitting Lasers,” IEEE J. Quantum Electron. 27(6), 1402–1409 (1991). [CrossRef]
  13. C. Degen, W. Elsaber, and I. Fischer, “Transverse modes in oxide confined VCSELs: Influence of pump profile, spatial hole burning, and thermal effects,” Opt. Express 5(3), 38–47 (1999). [CrossRef] [PubMed]
  14. K. J. Knopp, D. H. Christensen, G. V. Rhodes, J. M. Pomeroy, B. B. Goldberg, and M. S. Unlu, “Spatio–Spectral Mapping of Multimode Vertical Cavity Surface Emitting Lasers,” J. Lightwave Technol. 17(8), 1429–1435 (1999). [CrossRef]
  15. R. Amatya, D. Lüerßen, M. Farzaneh, and J. A. Hudgings, “Thermal Lensing in Oxide-Confined, Single-Mode VCSELs”, in Proceedings of IEEE CLEO/QELS (IEEE, 2006), paper JWB17.
  16. C. Degen, I. Fischer, and W. Elsäßer, “Thermally induced local gain suppression in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 76(23), 3352–3354 (2000). [CrossRef]
  17. M. Brunner, K. Gulden, R. Hovel, M. Moser, and M. Ilegems, “Thermal lensing effects in small oxide confined vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 76(1), 7–9 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited