OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4324–4336

Analysis of optical waveguides with ultra-thin metal film based on the multidomain pseudospectral frequency-domain method

Po-Jui Chiang, Yen-Chung Chiang, Nai-Hsiang Sun, and Shi-Xi Hong  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4324-4336 (2011)
http://dx.doi.org/10.1364/OE.19.004324


View Full Text Article

Enhanced HTML    Acrobat PDF (2262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Analysis of optical waveguides with thin metal films is studied by the multidomain pseudospectral frequency-domain (PSFD) method. Calculated results for both guiding and leaky modes are precise by means of the PSFD based on Chebyshev-Lagrange interpolating polynomials with modified perfectly matched layer (MPML). By introducing a suitable boundary condition for the dielectric-metallic interface, the stability and the spectrum convergence characteristic of the PSFD-MPML method can be sustained. The comparison of exact solutions of highly sensitive surface plasmon modes in 1D dielectric-metal waveguides and those calculated by our PSFD-MPML demonstrates the validity and usefulness of the proposed method. We also apply the method to calculate the effective refractive indices of an integrated optical waveguide with deposition of the finite gold metal layer which induces the hybrid surface plasmon modes. Furthermore, the 2-D optical structures with gold films are investigated to exhibit hybrid surface plasmon modes of wide variations. We then apply hybrid surface plasmon modes to design novel optical components–mode selective devices and the polarizing beam splitter.

© 2011 OSA

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(260.2110) Physical optics : Electromagnetic optics
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: December 22, 2010
Revised Manuscript: February 9, 2011
Manuscript Accepted: February 10, 2011
Published: February 18, 2011

Citation
Po-Jui Chiang, Yen-Chung Chiang, Nai-Hsiang Sun, and Shi-Xi Hong, "Analysis of optical waveguides with ultra-thin metal film based on the multidomain pseudospectral frequency-domain method," Opt. Express 19, 4324-4336 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4324


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857). [CrossRef]
  2. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, (Springer-Verlag, 1996).
  3. N. W. Ashcroft, and N. D. Mermin, Solid State Physics, (Harcount, 1976).
  4. H. Raether, Surface Plasmons, (Springer-Verlag, 1988).
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1998).
  6. M. I. Stockman, “Electromagnetic Theory of SERS,” in Springer Series Topics in Applied Physics–Surface Enhanced Raman Scattering Physics and Applications, K. Kneipp, M. Moskovits, and H. Kneipp, ed. (Springer-Verlag, 2006).
  7. R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993). [CrossRef]
  8. R. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999). [CrossRef]
  9. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004). [CrossRef]
  10. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propaga-tion with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  11. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef]
  12. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008). [CrossRef] [PubMed]
  13. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20227–20240 (2008). [CrossRef] [PubMed]
  14. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006). [CrossRef] [PubMed]
  15. D. R. Mason, D. K. Gramotnev, and K. S. Kim, “Wavelength-dependent transmission through sharp 90 ° bends in sub-wavelength metallic slot waveguides,” Opt. Express 18(15), 16139–16145 (2010). [CrossRef] [PubMed]
  16. S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10(1), 83–88 (1993). [CrossRef]
  17. Y. C. Lu, L. Yang, W. P. Huang, and S. S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry,” J. Lightwave Technol. 26(13), 1868–1876 (2008). [CrossRef]
  18. H. J. M. Kreuwel, P. V. Lambeck, J. M. N. Beltman, and T. J. A. Popma, “Mode-coupling in multilayer structures applied to a chemical sensor and a wavelength selective directional coupler,” in Proc. ECIO’87 (Glasgow, 11–13 May 1987) pp. 217–220.
  19. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18(5), 737–743 (2000). [CrossRef]
  20. Y. Tsuji and M. Koshiba, “Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,” J. Lightwave Technol. 18(4), 618–623 (2000). [CrossRef]
  21. Y.-P. Chiou, Y.-C. Chiang, and H.-C. Chang, “Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices,” J. Lightwave Technol. 18(2), 243–251 (2000). [CrossRef]
  22. Y.-C. Chiang, Y.-P. Chiou, and H.-C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,” J. Lightwave Technol. 20(8), 1609–1618 (2002). [CrossRef]
  23. Y.-P. Chiou, Y.-C. Chiang, C.-H. Lai, C.-H. Du, and H.-C. Chang, “Finite-difference modeling of dielectric waveguides with corners and slanted facets,” J. Lightwave Technol. 27(12), 2077–2086 (2009). [CrossRef]
  24. S. Xiao, R. Vahldieck, and H. Jin, “Full-wave analysis of guided wave structures using a novel 2-D FDTD,” IEEE Microw. Guid. Wave Lett. 2(5), 165–167 (1992). [CrossRef]
  25. N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microw. Theory Tech. 45(9), 1645–1649 (1997). [CrossRef]
  26. K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microw. Theory Tech. 34(11), 1104–1114 (1986). [CrossRef]
  27. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002). [PubMed]
  28. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004). [CrossRef] [PubMed]
  29. Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 1(1), 131–134 (2002). [CrossRef]
  30. B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134(2), 216–230 (1997). [CrossRef]
  31. B. Yang and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antenn. Propag. 47(1), 132–141 (1999). [CrossRef]
  32. J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155(2), 287–306 (1999). [CrossRef]
  33. P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026703 (2007). [CrossRef] [PubMed]
  34. P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44(1), 56–66 (2008). [CrossRef]
  35. P. J. Chiang and Y.-C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22(12), 908–910 (2010). [CrossRef]
  36. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expression,” IEEE J. Quantum Electron. 28(7), 1689–1700 (1992). [CrossRef]
  37. Y.-T. Huang, C.-H. Jang, S.-H. Hsu, and J.-J. Deng, “Antiresonant reflecting optical waveguides polariza-tion beam splitters,” J. Lightwave Technol. 24(9), 3553–3560 (2006). [CrossRef]
  38. M. Elshazly-Zaghloul and R. M. Azzam, “Brewster and pseudo-Brewster angles of uniaxial crystal surfaces and their use for determination of optical properties,” J. Opt. Soc. Am. 72(5), 657–661 (1982). [CrossRef]
  39. I. Hodgkinson, Q. H. Wu, M. Arnold, L. De Silva, G. Beydaghyan, K. Kaminska, and K. Robbie, “Biaxial thin-film coated-plate polarizing beam splitters,” Appl. Opt. 45(7), 1563–1568 (2006). [CrossRef] [PubMed]
  40. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc., 1988), http://refractiveindex.info/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited