OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4337–4345

Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates

D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J.-K. Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4337-4345 (2011)
http://dx.doi.org/10.1364/OE.19.004337


View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The production of inexpensive, large-scale, uniform substrates for surface-enhanced Raman scattering (SERS) is a key to popularize its usage in chemical and biological detection. We demonstrate a flexible nano-imprinted hexagonally patterned SERS-active substrate. Its electromagnetic enhancement factor was optimized by the thickness adjustment of its silver over-coated film. The experimental data show a good correspondence with the theoretical prediction. Such substrate was shown to exhibit high uniformity and reproducibility with a variation of less than 2%, offering a potential of greatly exploiting such substrate in infield biocide monitoring.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 21, 2010
Revised Manuscript: February 7, 2011
Manuscript Accepted: February 9, 2011
Published: February 22, 2011

Citation
D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J.-K. Wang, "Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates," Opt. Express 19, 4337-4345 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. C. Brown and M. J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008). [CrossRef]
  2. S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008). [CrossRef] [PubMed]
  3. D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37(5), 1025–1041 (2008). [CrossRef] [PubMed]
  4. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006). [CrossRef] [PubMed]
  5. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006). [CrossRef]
  6. H. V. Chu, Y. J. Liu, Y. W. Huang, and Y. P. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15(19), 12230–12239 (2007). [CrossRef] [PubMed]
  7. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” N. J. Phys. 10(10), 105006 (2008). [CrossRef]
  8. K. B. Li, L. V. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology 19(14), 145305 (2008). [CrossRef] [PubMed]
  9. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009). [CrossRef]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  11. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006). [CrossRef] [PubMed]
  12. D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78(20), 7211–7215 (2006). [CrossRef] [PubMed]
  13. T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A High Speed Detection Platform Based on Surface-Enhanced Raman scattering for monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall,” Plos One 4(5), e5470 (2009). [CrossRef] [PubMed]
  14. R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007). [CrossRef]
  15. B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84(5-8), 1544–1547 (2007). [CrossRef]
  16. B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008). [CrossRef]
  17. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998). [CrossRef]
  18. S. Srivastava, R. Sinha, and D. Roy, “Toxicological effects of malachite green,” Aquat. Toxicol. 66(3), 319–329 (2004). [CrossRef] [PubMed]
  19. E. Sudova, J. Machova, Z. Svobodova, and T. Vesely, “Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review,” Vet. Med. 52, 527–539 (2007).
  20. J. L. Allen, J. R. Meinertz, and J. E. Gofus, “Determination of malachite green and its leuco form in water,” J. AOAC Int. 77, 646 (1992).
  21. K. Sagar, M. Smyth, J. Wilson, and K. McLaughin, “High-performance liquid chromatographic determination of the triphenylmethane dye, malachite green, using amperometric detection at a carbon fibre microelectrode,” J. Chromatogr. A 659(2), 329–336 (1994). [CrossRef]
  22. C. H. Tsai, J. D. Lin, and C. H. Lin, “Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes,” Talanta 72(2), 368–372 (2007). [CrossRef] [PubMed]
  23. M.-C. Yang, J.-M. Fang, T.-F. Kuo, D.-M. Wang, Y.-L. Huang, L.-Y. Liu, P.-H. Chen, and T.-H. Chang, “Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water,” J. Agric. Food Chem. 55(22), 8851–8856 (2007). [CrossRef] [PubMed]
  24. T.-L. Chang, K.-Y. Cheng, T.-H. Chou, C.-C. Su, H.-P. Yang, and S.-W. Luo, “Hybrid-polymer nanostructures forming an anti-reflection film using two-beam interference and ultraviolet nanoimprint lithography,” Microelectron. Eng. 86(4-6), 874–877 (2009). [CrossRef]
  25. F. Pigeon, I. F. Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001). [CrossRef]
  26. M. M. Dvoynenko, I. I. Samoylenko, and J. K. Wang, “Suppressed light transmission through corrugated metal films at normal incidence,” J. Opt. Soc. Am. A 23(9), 2315–2319 (2006). [CrossRef]
  27. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  28. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009). [CrossRef]
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  30. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993). [CrossRef] [PubMed]
  31. H. B. Lueck, D. C. Daniel, and J. L. McHale, “Resonance Raman Study of Solvent Effects on a series of Triarylmethane Dyes,” J. Raman Spectrosc. 24(6), 363–370 (1993). [CrossRef]
  32. J. G. Bergman, D. S. Chemla, P. F. Liao, A. M. Glass, A. Pinczuk, R. M. Hart, and D. H. Olson, “Relationship between surface-enhanced Raman scattering and the dielectric properties of aggregated silver films,” Opt. Lett. 6(1), 33–35 (1981). [CrossRef] [PubMed]
  33. N. Félidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002). [CrossRef]
  34. M. M. Dvoynenko and J. K. Wang, “Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering,” Opt. Lett. 32(24), 3552–3554 (2007). [CrossRef] [PubMed]
  35. D. A. Weitz, S. Garoff, and T. J. Gramila, “Excitation spectra of surface-enhanced Raman scattering on silver-island films,” Opt. Lett. 7(4), 168–170 (1982). [CrossRef] [PubMed]
  36. B. Y. Lin, H. C. Hsu, C. H. Teng, H. C. Chang, J. K. Wang, and Y. L. Wang, “Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation,” Opt. Express 17(16), 14211–14228 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited