OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4357–4368

Blood cell assisted in vivo Particle Image Velocimetry using the confocal laser scanning microscope

Sung Min Choi, Wi Han Kim, Daniel Côté, Cheol-Woo Park, and Ho Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4357-4368 (2011)
http://dx.doi.org/10.1364/OE.19.004357


View Full Text Article

Enhanced HTML    Acrobat PDF (1532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated the feasibility of blood cell assisted in vivo Particle Image Velocimetry using confocal microscopy. Blood flow of skin vessel in a mouse was non-invasively imaged in vivo using a confocal microscopy. The video-rate confocal microscope was used to monitor the motion of the blood cells in the capillary of a live mouse ear. The home-built confocal laser scanning microscopy allowed us to take images at the acquisition rate of 30 frames per second. The individual blood cells could be distinguished from other cells and the trajectory of the each cell could be followed in the sequential images. The acquired confocal images were used to get the velocity profile of the in vivo blood flow in conjunction with the Particle Image Velocimetry (PIV), without injecting any exogenous nano/micro particles into the mouse. We were able to measure the blood velocity up to a few hundreds µm/sec for various vessels in a live mouse. Because there is no need for the injection of the exogenous tracing particles, it is expected that we could apply the current technology to the study of human capillary blood stream.

© 2011 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.0180) Microscopy : Microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 9, 2010
Revised Manuscript: February 9, 2011
Manuscript Accepted: February 11, 2011
Published: February 22, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Sung Min Choi, Wi Han Kim, Daniel Côté, Cheol-Woo Park, and Ho Lee, "Blood cell assisted in vivo Particle Image Velocimetry using the confocal laser scanning microscope," Opt. Express 19, 4357-4368 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech. 29(1), 399–434 (1997). [CrossRef]
  2. L. Dintenfass, “Blood rheology in pathogenesis of the coronary heart diseases,” Am. Heart J. 77(1), 139–147 (1969). [CrossRef] [PubMed]
  3. E. Fossum, A. Høieggen, A. Moan, G. Nordby, T. L. Velund, and S. E. Kjeldsen, “Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors,” Blood Press. 6(3), 161–165 (1997). [CrossRef] [PubMed]
  4. A. J. Lee, P. I. Mowbray, G. D. Lowe, A. Rumley, F. G. Fowkes, and P. L. Allan, “Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study,” Circulation 97(15), 1467–1473 (1998). [PubMed]
  5. K. Toth, G. Kesmarky, J. Vekasi, J. Nemes, L. Czopf, P. Kapronczay, R. Halmosi, E. Papp, and I. Juricskay, “Hemorheological and hemodynamic parameters in patients with essential hypertension,” Clin. Hemorheol. Microcirc. 21(3-4), 209–216 (1999).
  6. K. L. Resch, E. Ernst, A. Matrai, and H. F. Paulsen, “Fibrinogen and viscosity as risk factors for subsequent cardiovascular events in stroke survivors,” Ann. Intern. Med. 117(5), 371–375 (1992). [PubMed]
  7. J. R. Haywood, R. A. Shaffer, C. Fastenow, G. D. Fink, and M. J. Brody, “Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat,” Am. J. Physiol. 241(2), H273–H278 (1981). [PubMed]
  8. H. Wayland and P. C. Johnson, “Erythrocyte velocity measurement in microvessels by a two-slit photometric method,” J. Appl. Physiol. 22(2), 333–337 (1967). [PubMed]
  9. T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput. 19(5), 589–596 (1981). [CrossRef] [PubMed]
  10. J. Seki, Y. Sasaki, T. Oyama, and J. Yamamoto, “Fiber-optic laser-Doppler anemometer microscope applied to the cerebral microcirculation in rats,” Biorheology 33(6), 463–470 (1996). [CrossRef] [PubMed]
  11. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000). [CrossRef]
  12. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  13. Y. C. Ahn, W. G. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2007). [CrossRef] [PubMed]
  14. R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23(1), 261–304 (1991). [CrossRef]
  15. C. Poelma, P. Vennemann, R. Lindken, and J. Westerweel, “In vivo blood flow and wall shear stress measurements in the vitelline network,” Exp. Fluids 45(4), 703–713 (2008). [CrossRef]
  16. P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39(7), 1191–1200 (2006). [CrossRef]
  17. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999). [CrossRef]
  18. M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005). [CrossRef]
  19. R. Okuda, Y. Sugii, and K. Okamoto, “Velocity measurement of blood flow in a microtube using micro PIV system,” in Proceedings of PSFVIP-4, (Chamonix. France. Jun. 2003), pp. 1–7.
  20. Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas. 23(2), 403–416 (2002). [CrossRef] [PubMed]
  21. A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc. 29(3-4), 445–455 (2003).
  22. J. Y. Lee, H. S. Ji, and S. J. Lee, “Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos,” Physiol. Meas. 28(10), 1149–1162 (2007). [CrossRef] [PubMed]
  23. M. Minsky, “Microscopy apparatus,” US patent 3013467 (1961).
  24. T. Wilson, and T. Confocal Microscopy, Wilson, ed. (Academic Press, 1990).
  25. J. S. Park, C. K. Choi, and K. D. Kihm, “Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),” Exp. Fluids 37(1), 105–119 (2004). [CrossRef]
  26. H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip 7(3), 338–346 (2007). [CrossRef] [PubMed]
  27. R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles,” J. Biomech. 40(12), 2752–2757 (2007). [CrossRef] [PubMed]
  28. W. H. Kim, C. I. Kim, S. W. Lee, S. H. Lim, C. W. Park, H. Lee, and M. K. Park, “Particle image velocimetry of the blood flow in a micro-tube using the confocal laser scanning microscope,” J. Opt. Soc. Korea 14(1), 42–48 (2010). [CrossRef]
  29. I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with multimodal video rate microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008). [CrossRef]
  30. R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited