OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4384–4392

Cryogenic temperature measurement of THz meta-resonance in symmetric metamaterial superlattice

J. H. Woo, E. S. Kim, E. Choi, Boyoung Kang, Hyun-Hee Lee, J. Kim, Y. U. Lee, Tae Y. Hong, Jae H. Kim, and J. W. Wu  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4384-4392 (2011)
http://dx.doi.org/10.1364/OE.19.004384


View Full Text Article

Enhanced HTML    Acrobat PDF (3701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A symmetric metamaterial superlattice is introduced accommodating a high Q-factor trapped mode. THz time-domain spectroscopy is employed to measure the transmission spectra, identifying the excitation of trapped and open-modes in the meta-resonances. A finite-difference-time-domain calculation showed that the trapped mode excitation is from the cancelation of current densities among the nearest-neighboring meta-particles. A cryogenic temperature THz measurement is carried out to examine the temperature dependence of resonance characteristics of meta-resonances. At low temperatures, the temperature-independent radiative damping is dominant for the open-mode, while the Q-factor of the trapped mode is determined by the temperature-dependent phonon scattering and temperature-independent defect scattering with the radiative damping significantly suppressed. When compared with the room temperature measurement, a 16% increase in Q-factor is observed for the trapped mode, while a 7% increase for the open-mode at the cryogenic temperature.

© 2011 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Metamaterials

History
Original Manuscript: December 21, 2010
Revised Manuscript: February 15, 2011
Manuscript Accepted: February 17, 2011
Published: February 22, 2011

Citation
J. H. Woo, E. S. Kim, E. Choi, Boyoung Kang, Hyun-Hee Lee, J. Kim, Y. U. Lee, Tae Y. Hong, Jae H. Kim, and J. W. Wu, "Cryogenic temperature measurement of THz meta-resonance in symmetric metamaterial superlattice," Opt. Express 19, 4384-4392 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4384


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett. 99, 147401 (2007). [CrossRef] [PubMed]
  2. B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. Wu, "Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation," Opt. Express 18, 11552-11561 (2010). [CrossRef] [PubMed]
  3. R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, "Cryogenic temperatures as a path toward high-q terahertz metamaterials," Appl. Phys. Lett. 96, 071114 (2010). [CrossRef]
  4. V. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. Zheludev, "Temperature control of fano resonances and transmission in superconducting metamaterials," Opt. Express 18, 9015-9019 (2010). [CrossRef] [PubMed]
  5. S. Prosvirnin, and S. Zouhdi, "Resonances of closed modes in thin arrays of complex particles," in "Advances in Electromagnetics of Complex Media and Metamaterials," S. Zouhdi et al., ed. (Kluwer Academic Publishers, 2003), pp. 281-290.
  6. See http://www.teraview.com.
  7. See http://www.lumerical.com.
  8. B. Kang, J. Woo, E. Choi, H.-H. Lee, E. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. Kim, and J. Wu, "Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure," Opt. Express 18, 16492-16498 (2010). [CrossRef] [PubMed]
  9. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, "Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies," J. Appl. Phys. 90, 837 (2001). [CrossRef]
  10. M. Hangyo, T. Nagashima, and S. Nashima, "Spectroscopy by pulsed terahertz radiation," Meas. Sci. Technol. 13, 1727 (2002). [CrossRef]
  11. S. A. Lynch, P. Townsend, G. Matmon, D. J. Paul, M. Bain, H. S. Gamble, J. Zhang, Z. Ikonic, R. W. Kelsall, and P. Harrison, "Temperature dependence of terahertz optical transitions from boron and phosphorus dopant impurities in silicon," Appl. Phys. Lett. 87, 101114 (2005). [CrossRef]
  12. T.-I. Jeon, and D. Grischkowsky, "Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy," Appl. Phys. Lett. 72, 3032 (1998). [CrossRef]
  13. N. Laman, and D. Grischkowsky, "Terahertz conductivity of thin metal films," Appl. Phys. Lett. 93, 051105 (2008). [CrossRef]
  14. N. Ashcroft, and N. Mermin, Solid State Physics (Saunders, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited