OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4485–4500

Broadband linearized silicon modulator

Anatol Khilo, Cheryl M. Sorace, and Franz X. Kärtner  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4485-4500 (2011)
http://dx.doi.org/10.1364/OE.19.004485


View Full Text Article

Acrobat PDF (2042 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scheme to achieve a wideband linearized silicon Mach-Zehnder (MZ) modulator is proposed. The modulator consists of a single MZ interferometer with identical reverse-biased silicon diode phase shifters in both arms, driven in a push-pull configuration. It is shown that the 3rd order nonlinearity of the modulator can be eliminated by canceling the nonlinearities from the silicon phase shifters and the MZ transfer function against each other. The 2nd order nonlinearity is simultaneously eliminated by differential detection or operation away from the quadrature point. As a result, the linearity of the proposed silicon modulator greatly exceeds the linearity of a conventional MZ modulator with ideal, linear (e.g. LiNbO3) phase shifters. The simplicity and large optical and RF bandwidth of the proposed modulator make it attractive for analog photonic applications.

© 2011 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(250.7360) Optoelectronics : Waveguide modulators
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: January 4, 2011
Manuscript Accepted: February 15, 2011
Published: February 23, 2011

Citation
Anatol Khilo, Cheryl M. Sorace, and Franz X. Kärtner, "Broadband linearized silicon modulator," Opt. Express 19, 4485-4500 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4485


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. H. Cox III, Analog optical link: Theory and practice (Cambridge University Press, 2004).
  2. C. Chang, ed., RF photonics technology fiber links (Cambridge University Press, 2002).
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006). [CrossRef]
  4. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  5. R. C. Williamson and R. D. Esman, “RF Photonics,” J. Lightwave Technol. 26(9), 1145–1153 (2008). [CrossRef]
  6. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001). [CrossRef]
  7. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-1955 . [CrossRef] [PubMed]
  8. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  9. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  10. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  11. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010). [CrossRef]
  12. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010). [CrossRef]
  13. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995). [CrossRef]
  14. U. V. Cummings and W. B. Bridges, “Bandwidth of linearized electrooptic modulators,” J. Lightwave Technol. 16(8), 1482–1490 (1998). [CrossRef]
  15. R. B. Childs and V. A. O’Byrne, “Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator,” IEEE J. Sel. Areas Comm. 8(7), 1369–1376 (1990). [CrossRef]
  16. M. Nazarathy, J. Berger, A. Ley, I. Levi, and Y. Kagan, “Progress in externally modulated AM CATV transmission systems,” J. Lightwave Technol. 11(1), 82–105 (1993). [CrossRef]
  17. G. C. Wilson, T. H. Wood, M. Gans, J. L. Zyskind, J. W. Sulhoff, J. E. Johnson, T. Tanbun-Ek, and P. A. Morton, “Predistortion of electroabsorption modulators for analog CATV systems at 1.55 µm,” J. Lightwave Technol. 15(9), 1654–1662 (1997). [CrossRef]
  18. Y. Chiu, B. Jalali, S. Garner, and W. Steier, “Broad-band electronic linearizer for externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 11(1), 48–50 (1999). [CrossRef]
  19. V. Magoon, and B. Jalali, “Electronic linearization and bias control for externally modulated fiber optic link,” in IEEE Int. Microw. Photon. Meeting, Oxford, U.K., Sep. 2000, 145–147.
  20. R. Sadhwani and B. Jalali, “Adaptive CMOS predistortion linearizer for fiber-optic links,” J. Lightwave Technol. 21(12), 3180–3193 (2003). [CrossRef]
  21. A. Katz, W. Jemison, M. Kubak, and J. Dragone, “Improved radio over fiber performance using predistortion linearization,” in IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, Jun. 2003, 1403–1406.
  22. V. J. Urick, M. S. Rogge, P. F. Knapp, L. Swingen, and F. Bucholtz, “Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 54(4), 1458–1463 (2006). [CrossRef]
  23. S. K. Korotky and R. M. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm. 8(7), 1377–1381 (1990). [CrossRef]
  24. J. L. Brooks, G. S. Maurer, and R. A. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol. 11(1), 34–41 (1993). [CrossRef]
  25. H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153–164 (1991). [CrossRef]
  26. G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Tech. 42(12), 2642–2649 (1994). [CrossRef]
  27. M. L. Farwell, Z. Q. Lin, E. Wooten, and W. S. C. Chang, “An electrooptic intensity modulator with improved linearity,” IEEE Photon. Technol. Lett. 3(9), 792–795 (1991). [CrossRef]
  28. E. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999). [CrossRef]
  29. L. M. Johnson and H. V. Roussell, “Reduction intermodulation distortion in interferometric optical modulators,” Opt. Lett. 13(10), 928–930 (1988). [CrossRef] [PubMed]
  30. L. M. Johnson and H. V. Roussell, “Linearization of an interferometric modulator at microwave frequencies by polarization mixing,” IEEE Photon. Technol. Lett. 2(11), 810–811 (1990). [CrossRef]
  31. F. Gan and F. X. Kärtner, “High-speed silicon electrooptic modulator design,” IEEE Photon. Technol. Lett. 17(5), 1007–1009 (2005). [CrossRef]
  32. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8845 . [CrossRef] [PubMed]
  33. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-660 . [CrossRef] [PubMed]
  34. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007). [CrossRef]
  35. S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11027 . [CrossRef] [PubMed]
  36. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in 5th IEEE International Conference on Group IV Photonics, 4–6 (2008).
  37. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010). [CrossRef]
  38. N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7994 . [CrossRef] [PubMed]
  39. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3059 . [CrossRef] [PubMed]
  40. D. M. Gill, M. Rasras, K.-Y. Tu, Y.-K. Chen, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal bandwidth equalization in a CMOS compatible Si-ring modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009). [CrossRef]
  41. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  42. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-17106 . [CrossRef] [PubMed]
  43. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-430 . [CrossRef] [PubMed]
  44. S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” IEEE Proc. Lasers and Electro-Optics Soc. 537–538 (2007).
  45. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18235 . [CrossRef] [PubMed]
  46. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  47. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3129 . [CrossRef] [PubMed]
  48. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  49. J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5851 . [CrossRef] [PubMed]
  50. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]
  51. C. C. Sorace, A. Khilo, and F. X. Kärtner, “Broadband linear silicon Mach-Zehnder modulators,” in Integrated Photonics Research (IPR), Silicon and Nanophotonics, 2010, paper IWA4.
  52. Synopsys, Sentaurus Device User Guide, Z-2010.03 ed., March 2010.
  53. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  54. M. Popović, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” in Integrated Photonics Research 2003, Washington, DC, June 17, 2003, paper ITuD4.
  55. S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and Optimization of Silicon-Diode-Based Optical Modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited