OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4501–4512

Optical FFT/IFFT circuit realization using arrayed waveguide gratings and the applications in all-optical OFDM system

Zhenxing Wang, Konstantin S. Kravtsov, Yue-Kai Huang, and Paul R. Prucnal  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4501-4512 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Arrayed waveguide gratings (AWG) are widely used as wavelength division multiplexers (MUX) and demultiplexers (DEMUX) in optical networks. Here we propose and demonstrate that conventional AWGs can also be used as integrated spectral filters to realize a Fast Fourier transform (FFT) and its inverse form (IFFT). More specifically, we point out that the wavelength selection conditions of AWGs when used as wavelength MUX/DEMUX also enable them to perform FFT/IFFT functions. Therefore, previous research on AWGs can now be applied to optical FFT/IFFT circuit design. Compared with other FFT/IFFT optical circuits, AWGs have less structural complexity, especially for a large number of inputs and outputs. As an important application, AWGs can be used in optical OFDM systems. We propose an all-optical OFDM system with AWGs and demonstrate the simulation results. Overall, the AWG provides a feasible solution for all-optical OFDM systems, especially with a large number of optical subcarriers.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.7145) Fourier optics and signal processing : Ultrafast processing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 5, 2011
Revised Manuscript: February 6, 2011
Manuscript Accepted: February 6, 2011
Published: February 23, 2011

Zhenxing Wang, Konstantin S. Kravtsov, Yue-Kai Huang, and Paul R. Prucnal, "Optical FFT/IFFT circuit realization using arrayed waveguide gratings and the applications in all-optical OFDM system," Opt. Express 19, 4501-4512 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in Conference on Optical Fiber Communication, OFC (Anaheim, CA, 2002), paper ThD1, 401–402 (2002).
  2. W. Shieh and I. Djordjevic, OFDM for Optical Communications, Academic Press, 2009.
  3. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006). [CrossRef] [PubMed]
  4. W. Shieh, W. Chen, and R. S. Tucker, “Polarization mode dispersion mitigation in coherent optical orthogonal frequency division multiplexed systems,” Electron. Lett. 42(17), 996–997 (2006). [CrossRef]
  5. Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, D. Rangaraj, A. Cartolano, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing,” Opt. Express 17(20), 17658–17668 (2009). [CrossRef] [PubMed]
  6. Q. Yang, S. Chen, Y. Ma, and W. Shieh, “Real-time reception of multi-gigabit coherent optical OFDM signals,” Opt. Express 17(10), 7985–7992 (2009). [CrossRef] [PubMed]
  7. F. Buchali, R. Dischler, A. Klekamp, M. Bernhard, and Y. Ma, “Statistical Transmission Experiments Using a Real-Time 12.1 Gb/s OFDM Transmitter”, in Conference on Optical Fiber Communication, OFC (San Diego, CA, 2010), paper OMS3 (2010).
  8. S. Chen, Y. Ma, and W. Shieh, 110-Gb/s Multi-Band Real-Time Coherent Optical OFDM Reception after 600-km Transmission over SSMF Fiber”, in Conference on Optical Fiber Communication, OFC (San Diego, CA, 2010), paper OMS2 (2010).
  9. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Möller, M. Hübner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8Tb/s,” in Conference on Optical Fiber Communication, OFC (San Diego, CA, 2010), paper PDPC1 (2010).
  10. H. Chen, M. Chen, and S. Xie, “All-optical sampling orthogonal frequency-division multiplexing scheme for high-speed transmission system,” J. Lightwave Technol. 27(21), 4848–4854 (2009). [CrossRef]
  11. F. C. Garcia Gunning, S. K. Ibrahim, P. Frascella, P. Gunning, and A. D. Ellis, “High symbol rate OFDM transmission technologies”,in Conference on Optical Fiber Communication, OFC (San Diego, CA, 2010), paper OThD1 (2010).
  12. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2 Tb/s 24-carrier no-guad-interval coherent OFDM superchannel over 7200-km of Ultra-Large-Area Fiber,” in Proc. ECOC 2009 (Vienna, Austria), paper PD2.6 (2009).
  13. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009). [CrossRef] [PubMed]
  14. K. Lee, C. T. D. Thai, and J.-K. K. Rhee, “All optical discrete Fourier transform processor for 100 Gbps OFDM transmission,” Opt. Express 16(6), 4023–4028 (2008). [CrossRef] [PubMed]
  15. K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “PLC-based eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” in Conference on Optical Fiber Communication, OFC (San Diego, CA, 2010), paper OThB4 (2010).
  16. Y. Huang, D. Qian, R. E. Saperstein, P. N. Ji, N. Cvijetic, L. Xu, and T. Wang, “Dual-polarization 2x2 IFFT/FFT optical signal processing for 100-Gb/s QPSK-PDM all-optical OFDM,” in Conference on Optical Fiber Communication, OFC (San Diego, CA, 2009), paper OTuM4 (2009).
  17. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010). [CrossRef] [PubMed]
  18. A. J. Lowery, “Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers,” Opt. Express 18(13), 14129–14143 (2010). [CrossRef] [PubMed]
  19. C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24(12), 4763–4789 (2006). [CrossRef]
  20. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996). [CrossRef]
  21. G. Cincotti, N. Wada, and K. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers—part I: modeling and design,” J. Lightwave Technol. 24(1), 103–112 (2006). [CrossRef]
  22. K. Takada, M. Abe, and K. Okamoto, “Low-cross-talk polarization-insensitive 10-GHz-spaced 128-channel arrayed-waveguide grating multiplexer-demultiplexer achieved with photosensitive phase adjustment,” Opt. Lett. 26(2), 64–65 (2001). [CrossRef]
  23. K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-Crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001). [CrossRef]
  24. G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal wavelength-division multiplexing using coherent detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited