OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4513–4520

Improved performance of organic light-emitting diodes with MoO3 interlayer by oblique angle deposition

S.W. Liu, Y. Divayana, X.W. Sun, Y. Wang, K.S. Leck, and H.V. Demir  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4513-4520 (2011)
http://dx.doi.org/10.1364/OE.19.004513


View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/ N,N’-Di(naphth-2-yl)-N,N’-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/ Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ = 60° for MoO3.

© 2011 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Optical Devices

History
Original Manuscript: January 12, 2011
Revised Manuscript: February 13, 2011
Manuscript Accepted: February 15, 2011
Published: February 23, 2011

Citation
S.W. Liu, Y. Divayana, X.W. Sun, Y. Wang, K.S. Leck, and H.V. Demir, "Improved performance of organic light-emitting diodes with MoO3 interlayer by oblique angle deposition," Opt. Express 19, 4513-4520 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4513


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004). [CrossRef] [PubMed]
  2. C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987). [CrossRef]
  3. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett. 70(11), 1348–1350 (1997). [CrossRef]
  4. C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, “Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices,” Appl. Phys. Lett. 79(2), 272–274 (2001). [CrossRef]
  5. S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69(15), 2160–2162 (1996). [CrossRef]
  6. S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” J. Phys. D Appl. Phys. 29(11), 2750–2753 (1996). [CrossRef]
  7. I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett. 87(6), 063502 (2005). [CrossRef]
  8. J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73(20), 2866–2868 (1998). [CrossRef]
  9. T. Matsushima and C. Adachi, “Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers,” J. Appl. Phys. 103(3), 034501 (2008). [CrossRef]
  10. H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007). [CrossRef]
  11. H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, “White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer,” Adv. Mater. (Deerfield Beach Fla.) 18(3), 339–342 (2006). [CrossRef]
  12. T. Matsushima, G. H. Jin, and H. Murata, “Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide,” J. Appl. Phys. 104(5), 054501 (2008). [CrossRef]
  13. H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett. 91(12), 123504 (2007). [CrossRef]
  14. X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, “White OLED with high stability and low driving voltage based on a novel buffer layer MoOx,” J. Phys. D Appl. Phys. 40(18), 5553–5557 (2007). [CrossRef]
  15. H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett. 89(2), 023503 (2006). [CrossRef]
  16. R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, “Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones,” Jpn. J. Appl. Phys. 45(3A), 1829–1831 (2006). [CrossRef]
  17. S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, “Interfacial electronic structures in an organic light-emitting diode,” Appl. Phys. Lett. 74(5), 670–672 (1999). [CrossRef]
  18. E. Tutiŝ, D. Berner, and L. Zuppiroli, “Internal electric field and charge distribution in multilayer organic light-emitting diodes,” J. Appl. Phys. 93(8), 4594–4602 (2003). [CrossRef]
  19. Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, “Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface,” J. Lumin. 130(6), 959–962 (2010). [CrossRef]
  20. T. Matsushima, Y. Kinoshita, and H. Murata, “Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers,” Appl. Phys. Lett. 91(25), 253504 (2007). [CrossRef]
  21. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007). [CrossRef]
  22. B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, “Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,” Appl. Phys. Lett. 86(6), 063506 (2005). [CrossRef]
  23. J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, “Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias,” Appl. Surf. Sci. 214(1–4), 351–358 (2003). [CrossRef]
  24. E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, “Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies,” Chem. Phys. Lett. 287(1–2), 137–142 (1998). [CrossRef]
  25. C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient-behavior of organic thin-film electroluminescence,” Appl. Phys. Lett. 60(10), 1220–1222 (1992). [CrossRef]
  26. W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, “Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes,” Org. Electron. 9(3), 333–338 (2008). [CrossRef]
  27. H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999). [CrossRef] [PubMed]
  28. J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94(12), 7764–7767 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited