OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4542–4552

Real-time visualization of the dynamic evolution of CS2 4d and 6s Rydberg wave packet components

Jinyou Long, Yuzhu Liu, Chaochao Qin, Song Zhang, and Bing Zhang  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4542-4552 (2011)
http://dx.doi.org/10.1364/OE.19.004542


View Full Text Article

Enhanced HTML    Acrobat PDF (1704 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamic evolution of CS2 4d and 6s Rydberg wave packet components has been experimentally visualized via femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. The temporal evolution of the four components of the prepared Rydberg wave packet is directly observed as time-dependent changes of the intensities of different parts in the main photoelectron peak. Furthermore, time-resolved photoelectron angular distributions (PADs) clearly reflect the different component characters of 4d and 6s molecular orbitals. The lifetime of Rydberg wave packets is determined to be about 830fs and their decay is attributed to predissociation. Our results suggest the possibility of directly visualizing and determining the amplitudes and relative phases of different electronic and vibrational wave packet components in polyatomic molecules.

© 2011 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: September 9, 2010
Revised Manuscript: January 20, 2011
Manuscript Accepted: February 2, 2011
Published: February 24, 2011

Citation
Jinyou Long, Yuzhu Liu, Chaochao Qin, Song Zhang, and Bing Zhang, "Real-time visualization of the dynamic evolution of CS2 4d and 6s Rydberg wave packet components," Opt. Express 19, 4542-4552 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4542


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers,” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000). [CrossRef] [PubMed]
  2. J. C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 1996), p. 446.
  3. R. M. Bowman, M. Dantus, and A. H. Zewail, “Femtosecond transition-state spectroscopy of iodine: from strongly bound to repulsive surface dynamics,” Chem. Phys. Lett. 161(4-5), 297–302 (1989). [CrossRef]
  4. M. Shapiro and P. Brumer, “Laser control of product quantum state population in unimolecular reactions,” J. Chem. Phys. 84(7), 4103–4104 (1986). [CrossRef]
  5. S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, “Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy,” J. Chem. Phys. 114(6), 2519–2522 (2001). [CrossRef]
  6. A. Stolow, “Time-resolved photoelectron spectroscopy: non-adiabatic dynamics in polyatomic molecules,” Int. Rev. Phys. Chem. 22(2), 377–405 (2003). [CrossRef]
  7. I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006). [CrossRef]
  8. J. A. Yeazell, and T. Uzer, The Physics and Chemistry of Wave Packets, (Wiley, 2000).
  9. O. Knospe and R. Schmidt, “Revivals of wave packets: general theory and application to Rydberg clusters,” Phys. Rev. A 54(2), 1154–1160 (1996). [CrossRef] [PubMed]
  10. P. M. Felker and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. I. theoretical,” J. Chem. Phys. 86(5), 2460–2482 (1987). [CrossRef]
  11. J. A. Yeazell, M. Mallalieu, and C. R. Stroud., “Observation of the collapse and revival of a Rydberg electronic wave packet,” Phys. Rev. Lett. 64(17), 2007–2010 (1990). [CrossRef] [PubMed]
  12. J. A. Yeazell and C. R. Stroud., “Observation of fractional revivals in the evolution of a Rydberg atomic wave packet,” Phys. Rev. A 43(9), 5153–5156 (1991). [CrossRef] [PubMed]
  13. M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Observation of fractional revivals of a molecular wave packet,” Phys. Rev. A 54(1), R37–R40 (1996). [CrossRef] [PubMed]
  14. I. Fischer, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Femtosecond time-resolved zero kinetic energy photoelectron and photoionization spectroscopy studies of I2 wavepacket dynamics,” Chem. Phys. 207(2-3), 331–354 (1996). [CrossRef]
  15. T. Baumert, V. Engel, C. Röttgermann, W. T. Strunz, and G. Gerber, “Femtosecond pump—probe study of the spreading and recurrence of a vibrational wave packet in Na2,” Chem. Phys. Lett. 191(6), 639–644 (1992). [CrossRef]
  16. J. S. Baskin, P. M. Felker, and A. H. Zewail, “Purely rotational coherent effect and time-resolved sub-Doppler spectroscopy of large molecules. II. experimental,” J. Chem. Phys. 86(5), 2483–2499 (1987). [CrossRef]
  17. E. Skovsen, M. Machholm, T. Ejdrup, J. Thøgersen, and H. Stapelfeldt, “Imaging and control of interfering wave packets in a dissociating molecule,” Phys. Rev. Lett. 89(13), 133004 (2002). [CrossRef] [PubMed]
  18. H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science 311(5767), 1589–1592 (2006). [CrossRef] [PubMed]
  19. Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, “Pump-probe photoionization study of the passage and bifurcation of a quantum wave packet across an avoided crossing,” Phys. Rev. Lett. 90(24), 248303 (2003). [CrossRef] [PubMed]
  20. T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006). [CrossRef] [PubMed]
  21. K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Coherent polyatomic dynamics studied by femtosecond time-resolved photoelectron spectroscopy: dissociation of vibrationally excited CS2 in the 6s and 4d Rydberg states,” J. Chem. Phys. 125(17), 174314 (2006). [CrossRef] [PubMed]
  22. K. L. Knappenberger, E. B. Lerch, P. Wen, and S. R. Leone, “Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy,” J. Chem. Phys. 127(12), 124318 (2007). [CrossRef] [PubMed]
  23. I. Fischer, A. Lochschmidt, A. Strobel, G. Niedner-Schatteburg, K. Muller-Dethlefs, and V. E. Bondybey, “The non-resonant two-photon zero kinetic energy photoelectron spectrum of CS2,” Chem. Phys. Lett. 202(6), 542–548 (1993). [CrossRef]
  24. J. Baker and S. Couris, “A two-color (1+1’)+1 multiphoton ionization study of CS2 in the 61000–65600 cm−1 energy region,” J. Chem. Phys. 103(12), 4847–4854 (1995). [CrossRef]
  25. J. Baker and S. Couris, “A (1+1’)+1 multiphoton ionization study of CS2 in the 68500–73000 cm−1 energy region. the 3d and 5s Rydberg states,” J. Chem. Phys. 105(1), 62–67 (1996). [CrossRef]
  26. R. A. Morgan, M. A. Baldwin, A. J. Orr-Ewing, M. N. R. Ashfold, W. J. Buma, J. B. Milan, and C. A. de Lange, “Resonance enhanced multiphoton ionization spectroscopy of carbon disulphide,” J. Chem. Phys. 104(16), 6117–6129 (1996). [CrossRef]
  27. C. Cossart-Magos, M. Jungen, and F. Launay, “High-resolution absorption spectrum of jet-cooled CS2 between 70500 and 81550 cm−1: np and nf Rydberg series converging to the first ionization potential,” J. Chem. Phys. 109(16), 6666–6683 (1998). [CrossRef]
  28. Y. Wang, H. Shen, L. Hua, C. Hu, and B. Zhang, “Predissociation dynamics of the B state of CH3I by femtosecond pump-probe technique,” Opt. Express 17(13), 10506–10513 (2009). [CrossRef] [PubMed]
  29. Y. Liu, B. Tang, H. Shen, S. Zhang, and B. Zhang, “Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging,” Opt. Express 18(6), 5791–5801 (2010). [CrossRef] [PubMed]
  30. Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006). [CrossRef] [PubMed]
  31. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002). [CrossRef]
  32. J. E. Dove, H. Hippler, J. Plach, and J. Troe, “Ultraviolet spectra of vibrationally highly excited CS2 molecules,” J. Chem. Phys. 81(3), 1209–1214 (1984). [CrossRef]
  33. H. Liu, J. Zhang, S. Yin, L. Wang, and N. Lou, “CS2 decay dynamics investigated by two-color femtosecond laser pulses,” Phys. Rev. A 70(4), 042501 (2004). [CrossRef]
  34. V. Blanchet, S. Lochbrunner, M. Schmitt, J. P. Shaffer, J. J. Larsen, M. Z. Zgierski, T. Seideman, and A. Stolow, “Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes,” Faraday Discuss. 115(115), 33–48, discussion 79–102 (2000). [CrossRef] [PubMed]
  35. T. Seideman, “Time-resolved photoelectron angular distributions: concepts, applications, and directions,” Annu. Rev. Phys. Chem. 53(1), 41–65 (2002). [CrossRef] [PubMed]
  36. H. A. Bethe, Handbuch der Physik (Springer-Verlag, 1933), Vol. 24.
  37. M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic Press, 1974), Vol. 1.
  38. C. P. Schick and P. M. Weber, “Ultrafast dynamics in superexcited states of phenol,” J. Phys. Chem. A 105(15), 3725–3734 (2001). [CrossRef]
  39. J. W. Rabalais, Principles of Ultraviolet Photoelectron Spectroscopy (John Wiley and Sons: 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited