OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4583–4594

Jones matrix treatment for optical Fourier processors with structured polarization

Ignacio Moreno, Claudio Iemmi, Juan Campos, and Maria J. Yzuel  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4583-4594 (2011)
http://dx.doi.org/10.1364/OE.19.004583


View Full Text Article

Enhanced HTML    Acrobat PDF (1192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a Jones matrix method useful to analyze coherent optical Fourier processors employing structured polarization. The proposed method is a generalization of the standard classical optical Fourier transform processor, but considering vectorial spatial functions with two complex components corresponding to two orthogonal linear polarizations. As a result we derive a Jones matrix that describes the polarization output in terms of two vectorial functions defining respectively the structured polarization input and the generalized polarization impulse response. We apply the method to show and analyze an experiment in which a regular scalar diffraction grating is converted into equivalent polarization diffraction gratings by means of an appropriate polarization filtering. The technique is further demonstrated to generate arbitrary structured polarizations. Excellent experimental results are presented.

© 2011 OSA

OCIS Codes
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization
(070.2615) Fourier optics and signal processing : Frequency filtering

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: November 9, 2010
Revised Manuscript: January 1, 2011
Manuscript Accepted: January 25, 2011
Published: February 24, 2011

Citation
Ignacio Moreno, Claudio Iemmi, Juan Campos, and Maria J. Yzuel, "Jones matrix treatment for optical Fourier processors with structured polarization," Opt. Express 19, 4583-4594 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4583


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39(10), 1549–1554 (2000). [CrossRef]
  2. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79(11), 1587–1589 (2001). [CrossRef]
  3. V. Ramírez-Sánchez and G. Piquero, “Global beam shaping with nonuniformly polarized beams using amplitude transmitances,” Opt.Pura Apl. 40, 87–93 (2007).
  4. A. Volke and G. Heine, “Bringing order into light with structured polarizers,” Photonik Int. 2, 6–9 (2008).
  5. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  6. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  7. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]
  8. J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt. 44(19), 4049–4052 (2005). [CrossRef] [PubMed]
  9. M. Fratz, D. M. Giel, and P. Fischer, “Digital polarization holograms with defined magnitude and orientation of each pixel’s birefringence,” Opt. Lett. 34(8), 1270–1272 (2009). [CrossRef] [PubMed]
  10. G. Cincotti, “Polarization gratings: Design and applications,” IEEE J. Quantum Electron. 39(12), 1645–1652 (2003). [CrossRef]
  11. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999). [CrossRef]
  12. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26(9), 587–589 (2001). [CrossRef]
  13. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008). [CrossRef] [PubMed]
  14. J. L. Martínez, I. Moreno, and F. Mateos, “Hiding binary optical data with orthogonal circular polarizations,” Opt. Eng. 47(3), 030504 (2008). [CrossRef]
  15. B. Javidi and T. Nomura, “Polarization encoding for optical security systems,” Opt. Eng. 39(9), 2439–2443 (2000). [CrossRef]
  16. H.-Y. Tu, C.-J. Cheng, and M.-L. Chen, “Optical image encryption based on polarization encoding by liquid crystal spatial light modulators,” J. Opt. A, Pure Appl. Opt. 6(6), 524–528 (2004). [CrossRef]
  17. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27(21), 1929–1931 (2002). [CrossRef]
  18. K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005). [CrossRef] [PubMed]
  19. X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007). [CrossRef] [PubMed]
  20. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007). [CrossRef]
  21. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23(4), 241–243 (1998). [CrossRef]
  22. F. Gori, M. Santarsiero, R. Borghi, and G. Piquero, “Use of the van Cittert-Zernike theorem for partially polarized sources,” Opt. Lett. 25(17), 1291–1293 (2000). [CrossRef]
  23. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge 2007).
  24. I. Moreno, M. J. Yzuel, J. Campos, and A. Vargas, “Jones matrix treatment for polarization Fourier optics,” J. Mod. Opt. 51(14), 2031–2038 (2004). [CrossRef]
  25. I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Binary polarization pupil filter: Theoretical analysis and experimental realization with a liquid crystal display,” Opt. Commun. 264(1), 63–69 (2006). [CrossRef]
  26. I. Moreno, C. Iemmi, J. Campos, M. J. Yzuel, and A. Vargas, “Polarization vortices generation by diffraction from a four quadrant polarization mask,” Opt. Commun. 276(2), 222–230 (2007). [CrossRef]
  27. A. Martínez-García, I. Moreno, M. M. Sánchez-López, and P. García-Martínez, “Operational modes of a ferroelectric LCoS modulator for displaying binary polarization, amplitude, and phase diffraction gratings,” Appl. Opt. 48(15), 2903–2914 (2009). [CrossRef] [PubMed]
  28. I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: AVI (4871 KB)     
» Media 2: AVI (4871 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited