OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4632–4643

Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique

Hui Mao, Huilian Ma, and Zhonghe Jin  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4632-4643 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonator micro optic gyro (RMOG) is a promising candidate for applications requiring small, light and robust gyros. In optical passive ring resonator gyros, clockwise and counter clockwise lightwaves are modulated at different frequencies to reduce the backscattering induced noise. The effectiveness of this technique, however, is determined by the carrier suppression level. Accurate modulation index and high environmental temperature stability is required for achieving high total carrier suppression for the traditional single phase modulation technique (SPMT). In this paper, we propose an RMOG based on the double phase modulation technique (DPMT). Compared with the traditional SPMT, two additional phase modulations are added to provide additional carrier suppression. It is found that the control accuracy of the modulation index and temperature stability is relaxed more than 30 times. It is easily performed for reducing the backscattering error below the shot noise limited sensitivity. The modulation parameters in the DPMT are analyzed and optimized. Based on the optimum parameters of the DPMT, a bias stability of 1.85 × 10−4 rad/s is successfully demonstrated in the polarization maintaining silica waveguide resonator with the length of 7.9 cm. This is the best result reported to date, to the best of our knowledge, for a waveguide type passive ring resonator gyro.

© 2011 OSA

OCIS Codes
(060.2800) Fiber optics and optical communications : Gyroscopes
(140.4780) Lasers and laser optics : Optical resonators
(230.7390) Optical devices : Waveguides, planar
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: December 6, 2010
Revised Manuscript: January 26, 2011
Manuscript Accepted: January 26, 2011
Published: February 24, 2011

Hui Mao, Huilian Ma, and Zhonghe Jin, "Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique," Opt. Express 19, 4632-4643 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Sagnac, “L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometer en rotation uniforme,” C. R. Acad. Sci. 95, 708 (1913).
  2. W. M. Macek and D. T. M. Davis., “Rotation rate sensing with traveling wave ring laser,” Appl. Phys. Lett. 2(3), 67 (1963). [CrossRef]
  3. V. Vali and R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt. 15(5), 1099–1100 (1976). [CrossRef] [PubMed]
  4. S. Ezekiel, “Optical Gyroscope Options: Principles and Challenges,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper MC1.
  5. C. Ciminelli, F. Dell'Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2(3), 370–404 (2010). [CrossRef]
  6. M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Freq., Rivista Di Electron. 10, 45 (1998).
  7. M. Armenise and P. J. R. Laybourn, “Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE 3464, 81–90 (1998). [CrossRef]
  8. M. N. Armenise, V. M. N. Passaro, F. De Leonardis, and M. Armenise, “Modeling and Design of a Novel Miniaturized Integrated Optical Sensor for Gyroscope Systems,” J. Lightwave Technol. 19(10), 1476–1494 (2001). [CrossRef]
  9. K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, “Experimental investigation of a semiconductor ring laser as an optical gyroscope,” IEEE Trans. Instrum. Meas. 48(6), 1314–1318 (1999). [CrossRef]
  10. H.- Cao, C.-y. Liu, H. Ling, H. Deng, M. Benavidez, V. A. Smagley, R. B. Caldwell, G. M. Peake, G. A. Smolyakov, P. G. Eliseev, and M. Osiński, “Frequency beating between monolithically integrated semiconductor ring lasers,” Appl. Phys. Lett. 86(4), 041101 (2005). [CrossRef]
  11. A. W. Lawrence, “The micro-optic gyro,” Symposium Gyro Technology, (Stuttgart, West Germany, 1983).
  12. A. Lawrence, “Providing an inexpensive gyro for the navigation mass market,” Institute of Navigation, National Technical Meeting, (Academic, San Diego, Calif. 1990), 161–166.
  13. K. Iwatsuki, M. Saruwatari, M. Kawachi, and H. Yamazaki, “Waveguide-type optical passive ring-resonator gyro using time division detection scheme,” Electron. Lett. 25(11), 688–689 (1989). [CrossRef]
  14. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18(1), 66–72 (2000). [CrossRef]
  15. C. Monovoukas, A. Swiecki, and F. Maseeh, “Integrated optical gyroscopes offering low cost, small size and vibration immunity,” Proc. SPIE 3936, 293–300 (2000). [CrossRef]
  16. H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45(8), 080506 (2006). [CrossRef]
  17. H. Ma, Z. He, and K. Hotate, “Sensitivity improvement of waveguide-type optical passive ring resonator gyroscope by carrier suppression,” in Proc. OFS-20, 750353–1-750353–4 (2009).
  18. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized Design of Integrated Optical Angular Velocity Sensors Based on a Passive Ring Resonator,” J. Lightwave Technol. 27(14), 2658–2666 (2009). [CrossRef]
  19. H. Mao, H. Ma, and Z. Jin, “Resonator Micro-Optic Gyroscope Based on the Double Phase Modulation Technique,” in Proc. CLEO-2010, JWA52 (2010).
  20. C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” 13th Eur. Conf. Integrated Optics, (The Technical University of Denmark, Building 116, Copenhagen, Denmark, 2007), http://www.ecio-conference.org/2007/index.html .
  21. C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, and M. N. Armenise, “Low loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Research Center, Moffett Field, Calif, March1–6, 2009.
  22. H. K. Hsiao and K. A. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express 15(26), 17783–17797 (2007). [CrossRef] [PubMed]
  23. C. Ciminelli, F. Peluso, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2005). [CrossRef]
  24. R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994). [CrossRef]
  25. M. R. Poulsen, P. I. Borel, J. Fage-Pedersen, J. Hübner, M. Kristensen, J. H. Povlsen, K. Rottwitt, M. Svalgaard, W. Svendsen, J. F Pedersen, J Hubner, M Kristensen, J. H. Povlsen, K Rottwitt, M Svalgaard, and W. Svendsen, “Advances in silica-based integrated optics,” Opt. Eng. 42(10), 2821–2834 (2003). [CrossRef]
  26. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  27. M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89(7), 071117 (2006). [CrossRef]
  28. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005). [CrossRef] [PubMed]
  29. T. Imai, Y. Miki, S. Maeda, and K. Nishide, “Development of resonator fiber optic gyros, Eleventh International Conference on Optical Fiber Sensors,” Advanced Sensing Photonics, Japan Society of Applied Physics, Special Exhibition Ex2–1 (1996).
  30. T. J. Kaiser, D. Cardarelli, and J. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1991). [CrossRef]
  31. K. Hotate, K. Takiguchi, and A. Hirose, “Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 2(1), 75–77 (1990). [CrossRef]
  32. K. Suzuki, K. Takiguchi, and K. Hotate, “Reduction of backscattering-induced noise by ternary phase shift keying in resonator micro-optic gyro integrated on silica planar lightwave circuit,” Electron. Lett. 35(13), 1076–1077 (1999). [CrossRef]
  33. W. X. Zhang, Fiber Optic Gyroscope and its Application, 1st ed., (National Defense Industry Press, Beijing, China, 2008).
  34. X. L. Zhang, H. I. Ma, Z. H. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt. 45(31), 7961–7965 (2006). [CrossRef] [PubMed]
  35. J. Haavisto, “Thin film waveguides for inertial sensors,” Proc. Soc. Photo Opt. Instrum. Eng. 412, 221–228 (1983).
  36. Y. Chen, H. Ma, and Z. Jin, “New method to measure the half-wave voltage of the phase modulator,” The 2nd Asia-Pacific Optical Sensors Conference (APOS), 28–30 June, Guangzhou, China, paper TU6 (2010).
  37. G. A. Sanders, G. F. Rouse, L. K. Strandjord, N. A. Demma, K. A. Miesel, and Q. Y. Chen, “Resonator fiber-optic gyro using LiNbO3 integrated optics at 1.5μm wavelength,” Proc. SPIE 985, 202–210 (1988).
  38. H. Ma, S. Wang, and Z. Jin, “Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509–2512 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited