OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4667–4672

Near-field investigation of THz surface-wave emission from optically excited graphite flakes

M. Nagel, A. Michalski, T. Botzem, and H. Kurz  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4667-4672 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (940 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



THz emission from an unbiased graphite flake after optical sub-ps pulse inter-band excitation is measured using a novel micro-machined photoconductive probe-tip. Oscillatory behavior of the measured THz near-field emission is shown to originate from electromagnetic eigenmode resonances of the laterally limited graphite flake. The excitation efficiency of the lowest order eigenmode resonances strongly dependents on optical pump location. From this data a radial symmetric charge carrier translocation at the pump location is revealed as the dominating THz surface-wave emission effect. Measurements show good agreement with numerical field simulations of the eigenmode center frequencies and the spectral response expected for THz emission through basal plane oriented radial current surge excitation.

© 2011 OSA

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(040.2235) Detectors : Far infrared or terahertz
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: December 20, 2010
Revised Manuscript: February 18, 2011
Manuscript Accepted: February 18, 2011
Published: February 24, 2011

M. Nagel, A. Michalski, T. Botzem, and H. Kurz, "Near-field investigation of THz surface-wave emission from optically excited graphite flakes," Opt. Express 19, 4667-4672 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. NanoTechnol. 7(1), 91–99 (2008). [CrossRef]
  2. V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, and T. Otsuji, “Device model for graphene nanoribbon phototransistor,” Appl. Phys. Exp. 1, 063002 (2008). [CrossRef]
  3. N. L. Rangel and J. M. Seminario, “Graphene terahertz generators for molecular circuits and sensors,” J. Phys. Chem. A 112(51), 13699–13705 (2008). [CrossRef] [PubMed]
  4. V. Y. Aleshkin, A. A. Dubinov, and V. Ryzhii, “Terahertz laser based on optically pumped graphene: model and feasibility of realization,” JETP Lett. 89(2), 63–67 (2009). [CrossRef]
  5. M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009). [CrossRef]
  6. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94(5), 051107 (2009). [CrossRef]
  7. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008). [CrossRef]
  8. R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express 17(4), 2326–2333 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2326 . [CrossRef] [PubMed]
  9. M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009). [CrossRef] [PubMed]
  10. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8(12), 4248–4251 (2008). [CrossRef]
  11. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95(18), 187403 (2005). [CrossRef] [PubMed]
  12. H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, “Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahz. Waves (2010), doi:.
  13. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854 (2004). [CrossRef]
  14. J. M. Torres, “Nanosecond optical rectification and photon drag effect in nanocarbon thin films and wires,” J. Nanoelectron. Optoelectron. 4(2), 247–251 (2009). [CrossRef]
  15. G. Ramakrishnan, R. Chakkittakandy, and P. C. M. Planken, “Terahertz generation from graphite,” Opt. Express 17(18), 16092–16099 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16092 . [CrossRef] [PubMed]
  16. D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10(4), 1293–1296 (2010). [CrossRef] [PubMed]
  17. F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008). [CrossRef] [PubMed]
  18. F. Carbone, “The interplay between structure and orbitals in the chemical bonding of graphite,” Chem. Phys. Lett. 496(4-6), 291–295 (2010). [CrossRef]
  19. J. Shan, and T. F. Heinz, in Ultrafast Dynamical Processes in Semiconductors, Topics in Applied Physics, K.-T. Tsen, ed., (Springer, 2004), Vol. 92, pp. 1–59.
  20. M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007). [CrossRef]
  21. L. G. Johnson and G. Dresselhaus, “Optical properties of graphite,” Phys. Rev. B 7(6), 2275–2285 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited