OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4692–4702

Variable pulse repetition frequency output from an optically injected solid state laser

D M Kane and J P Toomey  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4692-4702 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optically injected solid state laser (OISSL) system is known to generate complex nonlinear dynamics within the parameter space of varying the injection strength of the master laser and the frequency detuning between the master and slave lasers. Here we show that within these complex nonlinear dynamics, a system which can be operated as a source of laser pulses with a pulse repetition frequency (prf) that can be continuously varied by a single control, is embedded. Generation of pulse repetition frequencies ranging from 200 kHz up to 4 MHz is shown to be achievable for an optically injected Nd:YVO4 solid state laser system from analysis of prior experimental and simulation results. Generalizing this to other optically injected solid state laser systems, the upper bound on the repetition frequency is of order the relaxation oscillation frequency for the lasers. The system is discussed in the context of prf versatile laser systems more generally. Proposals are made for the next generation of OISSLs that will increase understanding of the variable pulse repetition frequency operation, and determine its practical limitations. Such variable prf laser systems; both low powered, and, higher powered systems achieved using one or more optical power amplifier stages; have many potential applications from interrogating resonance behaviors in microscale structures, through sensing and diagnostics, to laser processing.

© 2011 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.3100) Nonlinear optics : Instabilities and chaos
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 21, 2010
Revised Manuscript: February 13, 2011
Manuscript Accepted: February 14, 2011
Published: February 24, 2011

D M Kane and J P Toomey, "Variable pulse repetition frequency output from an optically injected solid state laser," Opt. Express 19, 4692-4702 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Arnold, Department of Soft Matter Physics, Institue of Experimental Physics, Johannes Kepler Universität Linz, Austria, (personal communication, 2004).
  2. D. Basting, K. Pippert, and U. Stamm, “History and future prospects of excimer laser technology,” RIKEN Review 43, 14–22 (2002).
  3. M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, “Advances in copper laser technology: kinetic enhancement,” Prog. Quantum Electron. 28(3-4), 165–196 (2004). [CrossRef]
  4. R. Paschotta, “Encyclopedia of Laser Physics and Technology”, retrieved www.rp-photonics.com/encyclopedia .
  5. P. W. Milonni, and J. H. Eberly, Lasers (John Wiley and Sons, New York, 1988).
  6. T. L. Paoli, “Saturable absorption effects in the self-pulsing (AlGa)As junction laser,” Appl. Phys. Lett. 34(10), 652–655 (1979). [CrossRef]
  7. M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor lasers,” J. Appl. Phys. 58(4), 1689–1692 (1985). [CrossRef]
  8. M. Adams, “Theory of two-section laser amplifiers,” Opt. Quantum Electron. 21(1), S15–S31 (1989). [CrossRef]
  9. G. Farrell, P. Phelan, and J. Hegarty, “Selfpulsation operating regime for absorber of twin section laser diode,” Electron. Lett. 27(16), 1403–1405 (1991). [CrossRef]
  10. E. A. Avrutin, “Analysis of spontaneous emission and noise in self-pulsing laser-diodes,” IEE Proc., J Optoelectron. 140(1), 16–20 (1993). [CrossRef]
  11. M. Jinno and T. Matsumoto, “Optical retiming regenerator using 1.5 mm wavelength multielectrode DFB LDs,” Electron. Lett. 25(20), 1332–1333 (1989). [CrossRef]
  12. U. Bandelow, H. J. Wunsche, and H. Wenzel, “Theory of selfpulsations in 2-section DFB lasers,” IEEE Photon. Technol. Lett. 5(10), 1176–1179 (1993). [CrossRef]
  13. H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Rehberg, “Mechanisms of fast self pulsations in two-section DFB lasers,” IEEE J. Quantum Electron. 32(1), 69–78 (1996). [CrossRef]
  14. D. S. Yee, Y. A. Leem, S. T. Kim, K. H. Park, and B. G. Kim, “Self-pulsating amplified feedback laser based on a loss-coupled DFB laser,” IEEE J. Quantum Electron. 43(11), 1095–1103 (2007). [CrossRef]
  15. S. Nishikawa, M. Gotoda, T. Nishimura, T. Miyahara, T. Hatta, Y. Miyazak, K. Matsumoto, K. Takagi, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Lasing Mechanism Analysis of Self-Pulsating Distributed Feedback Laser Diodes and Successful Demonstration of All-Optical Signal Recovery at 40 Gbps,” Jpn. J. Appl. Phys. 47(5), 3493–3498 (2008). [CrossRef]
  16. S. F. Lim, J. A. Hudgings, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber,” Electron. Lett. 33(20), 1708–1710 (1997). [CrossRef]
  17. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16(3), 376–388 (1999). [CrossRef]
  18. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]
  19. B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997). [CrossRef] [PubMed]
  20. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34μm Nd:YVO(4) microchip laser with semiconductor saturable-absorber mirrors,” Opt. Lett. 22(13), 991–993 (1997). [CrossRef] [PubMed]
  21. B. Braun, F. X. Kartner, U. Keller, J. P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LaSc(3)(BO3)(4) microchip laser,” Opt. Lett. 21(6), 405–407 (1996). [CrossRef] [PubMed]
  22. J. J. Zayhowski and C. Dill, “Coupled-cavity electro-optically Q-switched Nd:YVO(4) microchip lasers,” Opt. Lett. 20(7), 716–718 (1995). [CrossRef] [PubMed]
  23. J. J. Zayhowski and C. Dill Iii, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994). [CrossRef] [PubMed]
  24. S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72 (2005).
  25. S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005). [CrossRef]
  26. S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007). [CrossRef]
  27. J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Express 17(9), 7592–7608 (2009). [CrossRef] [PubMed]
  28. S. Valling, B. Stahlberg, and A. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd: YVO4 laser,” Opt. Laser Technol. 39(1), 82–85 (2007). [CrossRef]
  29. T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor-laser subject to optical-injection,” Appl. Phys. Lett. 64(26), 3539–3541 (1994). [CrossRef]
  30. T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004). [CrossRef]
  31. Y. Isyanova, J. G. Manni, D. Welford, M. Jaspan, and J. A. Russell, “High-power, passively Q-switched microlaser - Power amplifier system,” in Advanced Solid-State Lasers, Proceedings, C. Marshall, ed. (2001), pp. 186–190.
  32. S. Pearce and C. L. M. Ireland, “Performance of a CW pumped Nd:YVO4 amplifier with kHz pulses,” Opt. Laser Technol. 35(5), 375–379 (2003). [CrossRef]
  33. A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (> 100 W) of a diode-pumped TEM00 Nd: GdVo(4) laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005). [CrossRef]
  34. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44(4), 582–590 (2005). [CrossRef] [PubMed]
  35. J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005). [CrossRef]
  36. C. C. Harb, M. B. Gray, H. A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium-YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30(12), 2907–2913 (1994). [CrossRef]
  37. T. J. Kane, “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photon. Technol. Lett. 2(4), 244–245 (1990). [CrossRef]
  38. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998). [CrossRef]
  39. R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, “Self-Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 23(6), 457–459 (1998). [CrossRef]
  40. N. J. van Druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman, “Observation of transverse modes in a microchip laser with combined gain and index guiding,” J. Opt. Soc. Am. B 18(12), 1793–1804 (2001). [CrossRef]
  41. Y. J. Cheng, P. L. Mussche, and A. E. Siegman, “Cavity decay-rate and relaxation oscillation frequency in unconventional laser cavities,” IEEE J. Quantum Electron. 31(2), 391–398 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited