OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4795–4804

Coupled photonic crystal micro-cavities with ultra-low threshold power for stimulated Raman scattering

Qiang Liu, Zhengbiao Ouyang, and Sacharia Albin  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4795-4804 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 1.254 × 108 and modal volume as small as 0.03μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power ~17.7nW and 2.58nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses.

© 2011 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(140.3550) Lasers and laser optics : Lasers, Raman
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: December 2, 2010
Revised Manuscript: January 28, 2011
Manuscript Accepted: January 30, 2011
Published: February 25, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Qiang Liu, Zhengbiao Ouyang, and Sacharia Albin, "Coupled photonic crystal micro-cavities with ultra-low threshold power for stimulated Raman scattering," Opt. Express 19, 4795-4804 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonics crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997). [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]
  4. T. J. Kippenberg’s PhD thesis, “Nonlinear Optics in Ultra-high-Q Whispering Gallery Mode Micro-cavities” (California Institute of Technology, May 2004), http://www.mpq.mpg.de/k-lab/publications/TJKippenbergThesis.pdf .
  5. X. Yang and C. W. Wong, “Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon,” Opt. Express 13(12), 4723–4730 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4723 . [CrossRef] [PubMed]
  6. Q. Quan, P. B. Deotare, and M. Lončar, “Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010). [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  8. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5703 . [CrossRef] [PubMed]
  9. V. E. Perlin and H. G. Winful, “Stimulated Raman Scattering in nonlinear periodic structures,” Phys. Rev. A 64(4), 043804 (2001). [CrossRef]
  10. X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/V(m) silicon photonic band gap defect cavity lasers,” Opt. Express 15(8), 4763–4780 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4763 . [CrossRef] [PubMed]
  11. C. E. B. A. H. Stein’s PhD thesis, “Stimulated Raman Scattering in Silicon Coupled Photonic Crystal Microcavity Arrays” (Universität Karlsruhe, May 2006), http://www.stanford.edu/group/nqp/jv_files/thesis/Benedikt-Thesis-RamanLaserPC-Design.pdf .
  12. http://www.rsoftdesign.com/ .
  13. N. C. Panoiu, M. Bahl, and R. M. Osgood., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12(8), 1605–1610 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1605 . [CrossRef] [PubMed]
  14. C. G. Bostan, R. M. de Ridder, V. J. Gadgil, L. Kuipers, and A. Driessen, “Line-Defect Waveguides in Hexagon-Hole type Photonic Crystal Slabs: Design and Fabrication using Focused Ion Beam Technology,” in Proceedings of Symposium IEEE/LEOS Benelux Chapter (Enschede 2003) pp. 253–256.
  15. T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Nanowire-array based photonics crystal cavity by finite-difference time domain calculations,” Phys. Rev. B 75(12), 125104 (2007). [CrossRef]
  16. S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004). [CrossRef]
  17. M. Tokushima, H. Yamada, and Y. Arakawa, “1.5 μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004). [CrossRef]
  18. E. Schonbrun, M. Tinker, W. Park, and J. B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17(6), 1196–1198 (2005). [CrossRef]
  19. W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, and C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15(23), 15500–15506 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15500 . [CrossRef] [PubMed]
  20. R. B. Wehrspohn, H. S. kitzerow, and K. Busch, Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials (Wiley-VCH, 2008).
  21. Z. Ouyang, X. Luo, J. C. Wang, C. P. Liu, and C. J. Wu, “A combined cavity for high sensitivity THz signal detection,” Proc. SPIE 6840, 684008, 684008-8 (2007). [CrossRef]
  22. Y. Wu, X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24(5), 345–347 (1999). [CrossRef]
  23. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003). [CrossRef] [PubMed]
  24. H. B. Lin and A. J. Campillo, “cw nonlinear optics in droplet microcavities diplaying enhanced gain,” Phys. Rev. Lett. 73(18), 2440–2443 (1994). [CrossRef] [PubMed]
  25. H. B. Lin and A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133(1–6), 287–292 (1997). [CrossRef]
  26. A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B Quantum Semiclassical Opt. 5(3), 272–278 (2003). [CrossRef]
  27. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11(22), 2862–2872 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2862 . [CrossRef] [PubMed]
  28. V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-Wave Optical Biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007). [CrossRef]
  29. A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel Switzerland) 10(3), 1871–1889 (2010). [CrossRef]
  30. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited