OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 4805–4814

Integration of polymer microlens array at fiber bundle extremity by photopolymerization

Xinhua Zeng, Jérôme Plain, Safi Jradi, Claire Darraud, Fréderic Louradour, Renaud Bachelot, and Pascal Royer  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 4805-4814 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel route to directly integrate an array of microlenses at the extremity of an optical fiber bundle. The method is based on photopolymerization at the end of the fiber. The method is based on the control of exposure dose and volume of the deposited droplet of photopolymerizable formulation. Optical properties of the integrated microlenses are discussed on the basis of FDTD calculations.

© 2011 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(160.5470) Materials : Polymers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 20, 2010
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 15, 2011
Published: February 28, 2011

Xinhua Zeng, Jérôme Plain, Safi Jradi, Claire Darraud, Fréderic Louradour, Renaud Bachelot, and Pascal Royer, "Integration of polymer microlens array at fiber bundle extremity by photopolymerization," Opt. Express 19, 4805-4814 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908). [CrossRef]
  2. J. W. Goodman, A. R. Dias, and L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2(1), 1–3 (1978). [CrossRef] [PubMed]
  3. J. D. Rees, “Non-Gaussian imaging properties of GRIN fiber lens arrays,” Appl. Opt. 21(6), 1009–1012 (1982). [CrossRef] [PubMed]
  4. Y. Ishihara, and K. Tanigaki, “A high sensitivity IL-CCD image sensor with monolithic resin lens array”, In Proceedings of IEEE IEDM. Tech. Dig. 497–500 (1983).
  5. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davues, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990). [CrossRef]
  6. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express 11(14), 1621–1627 (2003). [CrossRef] [PubMed]
  7. H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16(15), 11044–11051 (2008). [CrossRef] [PubMed]
  8. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006). [CrossRef] [PubMed]
  9. A. D. Ducharme, “Microlens diffusers for efficient laser speckle generation,” Opt. Express 15(22), 14573–14579 (2007). [CrossRef] [PubMed]
  10. J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007). [CrossRef] [PubMed]
  11. D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007). [CrossRef] [PubMed]
  12. M. J. Aernecke and D. R. Walt, “Optical-fiber arrays for vapor sensing,” Sens. Actuators B 142(2), 464–469 (2009). [CrossRef]
  13. V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008). [CrossRef]
  14. A. Chovin, P. Garrigue, P. Vinatier, and N. Sojic, “Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging,” Anal. Chem. 76(2), 357–364 (2004). [CrossRef] [PubMed]
  15. C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem. 76(24), 7202–7210 (2004). [CrossRef] [PubMed]
  16. E. P. Chan and A. J. Crosby, “Fabricating microlens arrays by surface wrinkling,” Adv. Mater. 18(24), 3238–3242 (2006). [CrossRef]
  17. O. J. Cayre and V. N. Paunov, “Fabrication of microlens arrays by gel trapping of self-assembled particle monolayers at the decane–water interface,” J. Mater. Chem. 14(22), 3300–3302 (2004). [CrossRef]
  18. W. R. Cox, T. Chen, and D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photonics News 32–35 (2001). [CrossRef]
  19. M. Yaegashi, M. Kinoshita, A. Shishido, and T. Ikeda, “Direct fabrication of microlens arrays with polarization selectivity,” Adv. Mater. 19(6), 801–804 (2007). [CrossRef]
  20. H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A, Pure Appl. Opt. 4(4), 354–28 (2002). [CrossRef]
  21. J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32(4), 203–214 (2003). [CrossRef] [PubMed]
  22. E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, and P. H. Seeberger, “Encoded fiber optic microsphere arrays for probing protein-carbohydrate interactions,” Angew. Chem. 115(43), 5475–5478 (2003). [CrossRef]
  23. D. R. Walt, T. M. Blicharz, R. B. Hayman, D. M. Rissin, M. Bowden, W. L. Siqueira, E. J. Helmerhorst, N. Grand-Pierre, F. G. Oppenheim, J. S. Bhatia, F. F. Little, and J. S. Brody, “Microsensor arrays for saliva diagnostics,” Ann. N. Y. Acad. Sci. 1098(1), 389–400 (2007). [CrossRef] [PubMed]
  24. C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008). [CrossRef] [PubMed]
  25. D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39(1), 38–50 (2009). [CrossRef] [PubMed]
  26. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40(32), 5860–5871 (2001). [CrossRef]
  27. X. H. Zeng, J. Plain, S. Jradi, P. Renaud-Goud, R. Deturche, P. Royer, and R. Bachelot, “High speed sub-micrometric microscopy using optical polymer microlens,” Chin. Opt. Lett. 7, 901–903 (2009). [CrossRef]
  28. D. Chandra, S. Yang, and P. C. Lin, “Strain responsive concave and convex microlens arrays,” Appl. Phys. Lett. 91(25), 251912-1-251912-3 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited