OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 4815–4826

Strong magnetic response of submicron Silicon particles in the infrared

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 4815-4826 (2011)
http://dx.doi.org/10.1364/OE.19.004815


View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-permittivity dielectric particles with resonant magnetic properties are being explored as constitutive elements of new metamaterials and devices. Magnetic properties of low-loss dielectric nanoparticles in the visible or infrared are not expected due to intrinsic low refractive index of optical media in these regimes. Here we analyze the dipolar electric and magnetic response of lossless dielectric spheres made of moderate permittivity materials. For low material refractive index (≲ 3) there are no sharp resonances due to strong overlapping between different multipole contributions. However, we find that Silicon particles with index of refraction ∼ 3.5 and radius ∼ 200nm present strong electric and magnetic dipolar resonances in telecom and near-infrared frequencies, (i.e. at wavelengths ≈ 1.2 – 2μm) without spectral overlap with quadrupolar and higher order resonances. The light scattered by these Si particles can then be perfectly described by dipolar electric and magnetic fields.

© 2011 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3820) Materials : Magneto-optical materials
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: October 25, 2010
Revised Manuscript: December 23, 2010
Manuscript Accepted: February 15, 2011
Published: February 28, 2011

Citation
A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, "Strong magnetic response of submicron Silicon particles in the infrared," Opt. Express 19, 4815-4826 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-4815


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1998). [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).
  4. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge Univ. Press, 2006).
  5. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  6. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  8. N. Engheta and R. W. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53, 1535–1556 (2005). [CrossRef]
  9. J. B. Pendry, “Beyond metamaterials,” Nat. Mater. 5, 763–764 (2006). [CrossRef]
  10. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  11. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, and G. S. Kino, “andW. E.Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  12. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garca-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008). [CrossRef] [PubMed]
  13. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008). [CrossRef]
  14. A. Alù, and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009). [CrossRef] [PubMed]
  15. A. Alù, and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008). [CrossRef]
  16. K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85, 543–545 (2004). [CrossRef]
  17. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double-negative (DNG) composite medium composed of magnetodielectric sphercal particles embedded in a matrix,” IEEE Trans. Antenn. Propag. 51, 2596–2603 (2003). [CrossRef]
  18. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005). [CrossRef]
  19. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717–3734 (2005). [CrossRef]
  20. A. Ahmadi and H. Mosallaei, “Physical configuration and performance modelling of all-dielectric metamaterials,” Phys. Rev. B 77, 045104 (2008). [CrossRef]
  21. M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009). [CrossRef]
  22. L. Jyhlä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006). [CrossRef]
  23. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of lefthanded behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007). [CrossRef] [PubMed]
  24. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007). [CrossRef] [PubMed]
  25. K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009). [CrossRef] [PubMed]
  26. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]
  27. S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2000). [CrossRef]
  28. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas–a review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Millimeter-Wave Comput.- Aided Eng. 4, 230–247 (1994). [CrossRef]
  29. R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1, 535–538 (2007). [CrossRef]
  30. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009). [CrossRef]
  31. M. M. Sigalas, D. A. Fattal, R. S. Williams, S. Y. Wang, and R. G. Beausoleil, “Electric field enhancement between two Si microdisks,” Opt. Express 15, 14711–14716 (2007). [CrossRef] [PubMed]
  32. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009). [CrossRef]
  33. P. Chylek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978). [CrossRef]
  34. G. Videen and W. S. Bickel, “Light-scattering resonances in small spheres,” Phys. Rev. A 45, 6008–6012 (1992). [CrossRef] [PubMed]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  36. S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18, 3556–3567 (2010). [CrossRef] [PubMed]
  37. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric magnetic particles,” Opt. Express 18, 11428–11443 (2010). [CrossRef] [PubMed]
  38. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), Sec. 2.3.
  39. O. N. Singh and A. Lakhtakia, eds., Electromagnetic Fields in Unconventional Materials and Structures (Wiley, 2000).
  40. L. Tsang and J. A. Kong, Scattering of Electromagnetic Waves-Advanced Topics (Wiley, 2001).
  41. R. Carminati and J. J. Sáenz, “Density of states and extinction mean free path of waves in random media: dispersion relations and sum rules,” Phys. Rev. Lett. 102, 093902 (2009). [CrossRef] [PubMed]
  42. P. D. García, R. Sapienza, A. Blanco, and C. López, “Photonic glass: a novel random material for light,” Adv. Mater. 19, 2597–2602 (2007). [CrossRef]
  43. M. Reufer, L. F. Rojas-Ochoa, S. Eiden, J. J. Sáenz, and F. Scheffold, “Transport of light in amorphous photonic materials,” Appl. Phys. Lett. 91, 171904 (2007). [CrossRef]
  44. M. Ibisate, D. Golmayo, and C. López, “Photonic crystals: silicon direct opals,” Adv. Mater. 28, 2899–2902 (2009). [CrossRef]
  45. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009). [CrossRef] [PubMed]
  46. P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express 17, 2224–2234 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: PDF (254 KB)      QuickTime
» Media 2: PDF (278 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited