OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 4827–4832

Intra-cavity patterning for mode control in 1.3μm coupled VCSEL arrays

Lukas Mutter, Benjamin Dwir, Andrei Caliman, Vladimir Iakovlev, Alexandru Mereuta, Alexei Sirbu, and Eli Kapon  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 4827-4832 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report coupled VCSEL arrays, emitting at 1.3μm wavelength, in which both the optical gain/loss and refractive index distributions were defined on different vertical layers. The arrays were electrically pumped through a patterned tunnel junction, whereas the array pixels were realized by intra-cavity patterning using sub-wavelength air gaps. Stable oscillations in coupled modes were evidenced for 2x2 array structures, from threshold current up to thermal roll-over, using spectrally resolved field pattern analysis.

© 2011 Optical Society of America

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(140.3325) Lasers and laser optics : Laser coupling
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 29, 2010
Revised Manuscript: February 6, 2011
Manuscript Accepted: February 17, 2011
Published: February 28, 2011

Lukas Mutter, Benjamin Dwir, Andrei Caliman, Vladimir Iakovlev, Alexandru Mereuta, Alexei Sirbu, and Eli Kapon, "Intra-cavity patterning for mode control in 1.3μm coupled VCSEL arrays," Opt. Express 19, 4827-4832 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11(12), 1536-1538 (1999). [CrossRef]
  2. A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief," IEEE Photon. Technol. Lett. 16(2), 368-370 (2004). [CrossRef]
  3. R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, "Transverse-mode control of vertical-cavity top-surface-emitting lasers," IEEE Photon. Technol. Lett. 5(4), 374-377 (1993). [CrossRef]
  4. M. Orenstein, E. Kapon, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Wullert, "2-dimensional phase-locked arrays of vertical-cavity semiconductor-lasers by mirror reflectivity modulation," Appl. Phys. Lett. 58(8), 804-806 (1991). [CrossRef]
  5. S. Shinada, and F. Koyama, "Single high-order transverse mode surface-emitting laser with controlled far-field pattern," IEEE Photon. Technol. Lett. 14(12), 1641-1643 (2002). [CrossRef]
  6. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, "Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 80(21), 3901-3903 (2002). [CrossRef]
  7. A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, "High-power single-mode vertical cavity surface-emitting lasers with triangular holey structure," Appl. Phys. Lett. 85(22), 5161-5163 (2004). [CrossRef]
  8. D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. L. Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery, A. J. Danner, A. V. Giannopoulos, and K. D. Choquette, "Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays," IEEE J. Sel. Top. Quantum Electron. 15(3), 909-917 (2009). [CrossRef]
  9. A. J. Liu, W. Chen, M. X. Xing, W. J. Zhou, H. W. Qu, and W. H. Zheng, "Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser," Appl. Phys. Lett. 96(15), 151103 (2010). [CrossRef]
  10. J. W. Shi, J. L. Yen, C. H. Jiang, K. M. Chen, T. J. Hung, and Y. J. Yang, "Vertical-cavity surface-emitting lasers (VCSELs) with high-power and single-spot far-field distributions at 850-nm wavelength by use of petal-shaped light-emitting apertures," IEEE Photon. Technol. Lett. 18(1-4), 481-483 (2006). [CrossRef]
  11. E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, "Single-transverse mode vertical-cavity lasers under continuous and pulsed operation," IEEE Photon. Technol. Lett. 13(9), 927-929 (2001). [CrossRef]
  12. A. C. Lehman, and K. D. Choquette, "One- and two-dimensional coherently coupled implant-defined vertical cavity laser arrays," IEEE Photon. Technol. Lett. 19, 1421-1423 (2007). [CrossRef]
  13. L. Bao, N. H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, "Singlemode emission from vertical-cavity surface-emitting lasers with low-index defects," IEEE Photon. Technol. Lett. 19(2-4), 239-241 (2007). [CrossRef]
  14. D. K. Serkland, K. D. Choquette, G. R. Hadley, K. M. Geib, and A. A. Allerman, "Two-element phased array of antiguided vertical-cavity lasers," Appl. Phys. Lett. 75(24), 3754-3756 (1999). [CrossRef]
  15. D. Zhou, and L. J. Mawst, "Two-dimensional phase-locked antiguided vertical-cavity surface-emitting laser arrays," Appl. Phys. Lett. 77(15), 2307-2309 (2000). [CrossRef]
  16. M. Arzberger, M. Lohner, G. Bohm, and M. C. Amann, "Low-resistivity p-side contacts for InP-based devices using buried InGaAs tunnel junction," Electron. Lett. 36(1), 87-88 (2000). [CrossRef]
  17. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, "Cavity mode-gain peak tradeoff for 1320nm wafer-fused VCSELs with 3mW single-mode emission power and 10-Gb/s modulation speed up to 70 degrees C," IEEE Photon. Technol. Lett. 19(2-4), 121-123 (2007). [CrossRef]
  18. W. Hofmann, "High-speed buried tunnel junction vertical-cavity surface-emitting lasers," IEEE Photon. J. 1, 1-14 (2010).
  19. L. Mutter, V. Iakovlev, A. Caliman, A. Mereuta, A. Sirbu, and E. Kapon, "1.3 μm-wavelength phase-locked VCSEL arrays incorporating patterned tunnel junction," Opt. Express 17(10), 8558-8566 (2009). [CrossRef] [PubMed]
  20. A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, and E. Kapon, "10-Gb/s and 10-km error-free transmission up to 100 degrees C with 1.3-mu m wavelength wafer-fused VCSELs," Opt. Express 17(15), 12981-12986 (2009). [CrossRef] [PubMed]
  21. D. E. Ackley, and R. W. H. Engelmann, "Twin-stripe injection-laser with leaky-mode coupling," Appl. Phys. Lett. 37(10), 866-868 (1980). [CrossRef]
  22. E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, "Coupling mechanism of gain-guided integrated semiconductor-laser arrays," Appl. Phys. Lett. 44(4), 389-391 (1984). [CrossRef]
  23. D. Debernardi, G. Bava, F. di Sopra, and M. B. Willemsen, "Features of vectorial modes in phase-coupled VCSEL arrays: experiment and theory," IEEE J. Sel. Top. Quantum Electron. 19, 109-119 (2003). [CrossRef]
  24. A. Golshani, H. Pier, E. Kapon, and M. Moser, "Photon mode localization in disordered arrays of vertical cavity surface emitting lasers," J. Appl. Phys. 85(4), 2454-2456 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited