OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 4949–4956

Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M.H. Hong  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 4949-4956 (2011)
http://dx.doi.org/10.1364/OE.19.004949


View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Arrays of plasmonic pentamers consisting of five metallic nano-disks were designed and fabricated to achieve a pronounced Fano Resonance with polarization-independent far-field spectral response at normal incidence due to the structure symmetry of pentamers. A mass-spring coupled oscillator model was applied to study plasmon interactions among the nano-disks. It was found that the direction of the excitation light polarization can flexibly tune the spatial localization of near-field energy at sub-wavelength scales while the collective optical properties are kept constant. It can lead to a selective storage of excited energy down to sub-20 nm gap at a normal incident with a single light source.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 3, 2011
Revised Manuscript: January 28, 2011
Manuscript Accepted: February 12, 2011
Published: March 1, 2011

Citation
M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M.H. Hong, "Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers," Opt. Express 19, 4949-4956 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-4949


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  2. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010). [CrossRef]
  3. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  4. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett. 10(4), 1405–1408 (2010). [CrossRef] [PubMed]
  5. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  6. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006). [CrossRef]
  7. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009). [CrossRef]
  8. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010). [CrossRef] [PubMed]
  9. M. Wickenhauser, J. Burgdörfer, F. Krausz, and M. Drescher, “Time resolved Fano resonances,” Phys. Rev. Lett. 94(2), 023002 (2005). [CrossRef] [PubMed]
  10. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009). [CrossRef] [PubMed]
  11. X. R. Su, Z. S. Zhang, L. H. Zhang, Q. Q. Li, C. C. Chen, Z. J. Yang, and Q. Q. Wang, “Plasmonic interferences and optical modulations in dark-bright-dark plasmon resonators,” Appl. Phys. Lett. 96(4), 043113 (2010). [CrossRef]
  12. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and M. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  13. K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys., A Mater. Sci. Process. 100(2), 333–339 (2010). [CrossRef]
  14. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010). [CrossRef] [PubMed]
  15. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010). [CrossRef] [PubMed]
  16. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010). [CrossRef] [PubMed]
  17. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007). [CrossRef] [PubMed]
  18. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009). [CrossRef] [PubMed]
  19. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008). [CrossRef] [PubMed]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  21. D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon modes of nanosphere trimers and quadrumers,” J. Phys. Chem. B 110(25), 12302–12310 (2006). [CrossRef] [PubMed]
  22. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008). [CrossRef] [PubMed]
  23. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  24. S. A. Maier, “Plasmonics: The benefits of darkness,” Nat. Mater. 8(9), 699–700 (2009). [CrossRef] [PubMed]
  25. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited