OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 4970–4976

Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs

C. W. Chow and C. H. Yeh  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 4970-4976 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Long-reach passive optical network (LR-PON) is considered as a promising technology towards higher capacity and extended coverage optical system. We propose and demonstrate a LR-PON with the capability of Rayleigh backscattering (RB) noise mitigation. By using the upstream signal wavelength-transition generated by a dual-parallel Mach-Zehnder modulator (DP-MZM) based colorless optical networking unit (ONU), the spectral overlap among the upstream signal and the RB noises can be minimized. Hence, due to the achievement of effective RB mitigation, a 100 km LR-PON with a high split-ratio of 512 is demonstrated using 10 Gb/s non-return-to-zero (NRZ) downstream and 2.5 Gb/s NRZ upstream signals. Detail analysis of the wavelength-transition generation is presented.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 12, 2011
Revised Manuscript: February 7, 2011
Manuscript Accepted: February 7, 2011
Published: March 1, 2011

C. W. Chow and C. H. Yeh, "Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs," Opt. Express 19, 4970-4976 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Van de Voorde, C. M. Martin, J. Vandewege, and X. Z. Oiu, “The SuperPON demonstrator: an exploration of possible evolution paths for optical access networks,” IEEE Commun. Mag. 38(2), 74–82 (2000). [CrossRef]
  2. D. B. Payne and R. P. Davey, “The Future of fiber access systems,” BT Technol. J. 20(4), 104–114 (2002). [CrossRef]
  3. G. Talli, C. W. Chow, E. K. MacHale, and P. D. Townsend, “Rayleigh noise mitigation in long-reach hybrid DWDM-TDM PONs,” J. Opt. Netw. 6(6), 765–776 (2007). [CrossRef]
  4. I. T. Monroy, F. Öhman, K. Yvind, R. Kjaer, C. Peucheret, A. M. J. Koonen, and P. Jeppesen, “85 km long reach PON system using a reflective SOA-EA modulator and distributed Raman fiber amplification,” Proc. LEOS Annual Meeting, Paper WEE4 (2006).
  5. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008). [CrossRef] [PubMed]
  6. C. H. Wang, C. W. Chow, C. H. Yeh, C. L. Wu, S. Chi, and C. Lin, “Rayleigh noise mitigation using single sideband modulation generated by a dual-parallel MZM for carrier distributed PON,” IEEE Photon. Technol. Lett. 22(11), 820–822 (2010). [CrossRef]
  7. C. W. Chow, and C. H. Yeh, “Long-reach WDM PONs,” Proc. IEEE Photonics Society Annual Meeting, Invited Talk WA1 (2010).
  8. C. W. Chow, G. Talli, and P. D. Townsend, “Rayleigh noise reduction in 10-Gb/s DWDM-PONs by wavelength detuning and phase-modulation-induced spectral broadening,” IEEE Photon. Technol. Lett. 19(6), 423–425 (2007). [CrossRef]
  9. Z. Li, Y. Dong, Y. Wang, and C. Lu, “A novel PSK—Manchester modulation format in 10-Gb/s passive optical network system with high tolerance to beat interference noise,” IEEE Photon. Technol. Lett. 17(5), 1118–1120 (2005). [CrossRef]
  10. M. T. Abuelma’atti, “Large signal analysis of the Mach-Zehnder modulator with variable bias,” Proc. Natl. Sci. Counc. ROC(A) 25, 254–258 (2001).
  11. O. Leclerc, P. Brindel, D. Rouvillain, E. Pincemin, B. Dany, E. Desurvire, C. Duchet, E. Boucherez, and S. Bouchoule, “40 Gbit/s polarization-insensitive and wavelength-independent InP Mach-Zehnder modulator for all-optical regeneration,” Electron. Lett. 35(9), 730–732 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited