OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 4991–5001

Laser-launched evanescent surface plasmon polariton field utilized as a direct coherent pumping source to generate emitted nonlinear four-wave mixing radiation

Qun Zhang, Ke Lin, and Yi Luo  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 4991-5001 (2011)
http://dx.doi.org/10.1364/OE.19.004991


View Full Text Article

Enhanced HTML    Acrobat PDF (1187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a concept of surface plasmon polaritons (SPPs) based four-wave mixing (4WM), in which a laser-launched evanescent SPP field is utilized as a coherent pumping source to involve directly in a nonlinear 4WM process at the dielectric/metal interface. Conversion efficiency of the resulting 4WM radiation is expected to be dramatically increased due to the local-field enhancement effect. Feasibility of implementing this concept at the air/gold film and graphene flake/gold film interfaces is further examined by numerical simulations. The concept shows intriguing promise for applications in newly emerging nanophotonics, optoelectronics, and active plasmonics.

© 2011 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 28, 2011
Revised Manuscript: February 16, 2011
Manuscript Accepted: February 17, 2011
Published: March 1, 2011

Citation
Qun Zhang, Ke Lin, and Yi Luo, "Laser-launched evanescent surface plasmon polariton field utilized as a direct coherent pumping source to generate emitted nonlinear four-wave mixing radiation," Opt. Express 19, 4991-5001 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-4991


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons (North-Holland, 1982).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005). [CrossRef]
  4. J. R. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. Lond. A 362(1817), 739–756 (2004). [CrossRef]
  5. M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics (Springer, 2007).
  6. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  7. J. A. Polo and A. Lakhtakia, “Surface electromagnetic waves: A review,” Laser Photonics Rev. 5(2), 234–246 (2011). [CrossRef]
  8. H. Raether, in Physics of Thin Films, G. Hass, M. H. Francombe, and R. W. Hoffman, eds. (Academic Press, 1977), Vol. 9, Chap. 3, pp. 145–262.
  9. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2(7), 426–429 (2007). [CrossRef]
  10. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974). [CrossRef]
  11. G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984). [CrossRef]
  12. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003). [CrossRef] [PubMed]
  13. S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90(19), 197403 (2003). [CrossRef] [PubMed]
  14. C. K. Chen, A. R. B. de Castro, Y. R. Shen, and F. DeMartini, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43(13), 946–949 (1979). [CrossRef]
  15. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 1988).
  16. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  17. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008). [CrossRef] [PubMed]
  18. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103(26), 266802 (2009). [CrossRef]
  19. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010). [CrossRef] [PubMed]
  20. J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19(3), 1777–1785 (2011). [CrossRef] [PubMed]
  21. Y. Wang, C.-Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, “Four-wave mixing microscopy of nanostructures,” Adv. Opt. Photon. 3(1), 1–52 (2011). [CrossRef]
  22. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  23. N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces,” Phys. Rev. Lett. 105(1), 017402 (2010). [CrossRef] [PubMed]
  24. D. W. Lynch, and W. R. Hunter, in Handbook of Optical Constants of Solids, E. Palik, ed. (Academic Press, 1985), pp. 286–295.
  25. A. V. Krasavin and A. V. Zayats, “Numerical analysis of long-range surface plasmon polariton modes in nanoscale plasmonic waveguides,” Opt. Lett. 35(13), 2118–2120 (2010). [CrossRef] [PubMed]
  26. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004). [CrossRef] [PubMed]
  27. B. Dragnea, J. M. Szarko, S. Kowarik, T. Weimann, J. Feldmann, and S. R. Leone, “Near-field surface plasmon excitation on structured gold films,” Nano Lett. 3(1), 3–7 (2003). [CrossRef]
  28. R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals,” Opt. Commun. 229(1–6), 403–412 (2004). [CrossRef]
  29. E. Xenogiannopoulou, P. Aloukos, S. Couris, E. Kaminska, A. Piotrowska, and E. Dynowska, “Third-order nonlinear optical properties of thin sputtered gold films,” Opt. Commun. 275(1), 217–222 (2007). [CrossRef]
  30. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef] [PubMed]
  31. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009). [CrossRef] [PubMed]
  32. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]
  33. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010). [CrossRef] [PubMed]
  34. J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97(9), 091904 (2010). [CrossRef]
  35. D. L. Wood and K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21(16), 2978–2981 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 3 Fig. 2
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited