OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5026–5039

Fluorophore-doped xerogel antiresonant reflecting optical waveguides

A. Llobera, V.J. Cadarso, E. Carregal-Romero, J. Brugger, C. Domínguez, and C. Fernández-Sánchez  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5026-5039 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Rhodamine B and Alexa Fluor 430 fluorophores have been used as doping agents for xerogel waveguides defined over an antiresonant (ARROW) filter. This configuration has a significant level of integration, since it merges the waveguide, the light emitter and the filter in a single photonic element. Different technologies have been combined for their implementation, namely soft lithography, standard silicon-based technology and silicon bulk micromachining. The spectral response of 15-mm long waveguides without fluorophore is first analyzed as a function of the waveguide width. Here, it has been observed how the xerogel used has a high transparency in the visible spectra, having only significant absorption at the wavelength where the ARROW filter is in resonance. In a second step, identical waveguides but doped with two different concentrations of Rhodamine B and Alexa Fluor 430 are studied. In addition to the effect of the filter, fluorophore-doped xerogel waveguides show losses close to −2 dB (equivalent to 2 dB of light emission). In addition, it has been observed how an increase of the fluorophore concentration within the xerogel matrix does not provide with a emission increase, but saturation or even a decrease of this magnitude due to self-absorption. Finally, the total losses of the proposed waveguides are analyzed as a function of their width, obtaining losses close to 5 dB for waveguide widths higher than 50 µm.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.2050) Lasers and laser optics : Dye lasers
(250.3680) Optoelectronics : Light-emitting polymers
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: November 22, 2010
Revised Manuscript: January 25, 2011
Manuscript Accepted: January 25, 2011
Published: March 2, 2011

A. Llobera, V.J. Cadarso, E. Carregal-Romero, J. Brugger, C. Domínguez, and C. Fernández-Sánchez, "Fluorophore-doped xerogel antiresonant reflecting optical waveguides," Opt. Express 19, 5026-5039 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem. 80(9), 3498–3501 (2008). [CrossRef] [PubMed]
  2. M. B. Christiansen, J. M. Lopacinska, M. H. Jakobsen, N. A. Mortensen, M. Dufva, and A. Kristensen, “Polymer photonic crystal dye lasers as optofluidic cell sensors,” Opt. Express 17(4), 2722–2730 (2009). [CrossRef] [PubMed]
  3. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003). [CrossRef]
  4. H. Joensson, C. Zhang, M. Uhlén, and H. Andersson Svahn, “A homogeneous assay for biomolecule interaction analysis in droplets by fluorescence polarization” 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands 1802–1804 (2010)
  5. J. Hübner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels,” Rev. Sci. Instrum. 72(1), 229–233 (2001). [CrossRef]
  6. F. Z. Lin, Y. J. Chiu, S. A. Tsai, and T. H. Wu, “Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler,” Opt. Express 16(11), 7588–7594 (2008). [CrossRef] [PubMed]
  7. A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethyl siloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004). [CrossRef] [PubMed]
  8. N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, K. Dennis, B. Comeau, and C. Henderson, “Integrated planar lightwave bio/chem OEIC sensors on si CMOS circuits,” Proc. SPIE 5730, 226–233 (2005). [CrossRef]
  9. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006). [CrossRef] [PubMed]
  10. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006). [CrossRef] [PubMed]
  11. A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010). [CrossRef] [PubMed]
  12. M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007). [CrossRef] [PubMed]
  13. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” J. Quant. Elect. 28(7), 1689–1700 (1992). [CrossRef]
  14. A. Llobera, Í. Salinas, I. Garcés, R. Alonso, and C. Domínguez, “Large-core single-mode waveguides with cross-sectional antiresonant confinement,” IEEE J. Lightwave Tech. 22(6), 1560–1565 (2004). [CrossRef]
  15. N. J. Goddard, J. Hulme, C. Malins, K. Singh, and P. R. Fielden, “Asymmetric anti-resonant reflecting optical waveguides (arrow) as chemical sensors,” Analyst (Lond.) 127(3), 378–382 (2002). [CrossRef]
  16. S. Wong, M. Deubel, F. Perez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006). [CrossRef]
  17. T. Woggon, T. Kleiner, M. Punke, and U. Lemmer, “Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization,” Opt. Express 17(4), 2500–2507 (2009). [CrossRef] [PubMed]
  18. S. J. Lee, M. Goedert, M. T. Matyska, E. M. Ghandehari, M. Vijay, and J. J. Pesek, “Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips,” J. Micromech. Microeng. 18, 025026 (9pp) (2008).
  19. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998). [CrossRef]
  20. R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci. 247(1-4), 504–512 (2005). [CrossRef]
  21. E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, and R. Reisfeld, “New Conjugated Polymer Sol-Gel Glass Composites: Luminescence and Optical Waveguides,” Adv. Mater. 8(10), 833–837 (1996). [CrossRef]
  22. C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83(20), 4101–4104 (2003). [CrossRef]
  23. X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater. 12(1), 1–18 (1999). [CrossRef]
  24. A. Llobera, V. J. Cadarso, M. Darder, C. Domínguez, and C. Fernández-Sánchez, “Full-field photonic biosensors based on tunable bio-doped sol-gel glasses,” Lab Chip 8(7), 1185–1190 (2008). [CrossRef] [PubMed]
  25. L. Yang, S. S. Saavedra, N. R. Armstrong, and J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66(8), 1254–1263 (1994). [CrossRef] [PubMed]
  26. C. Sanchez, B. Lebeau, F. Chaput, and J. P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 12(23), 1969–1993 (2003). [CrossRef]
  27. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton fabrication,” Laser Photon. Rev. 2(1-2), 100–111 (2008). [CrossRef]
  28. C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Domínguez, and A. Llobera, “Patterning of high aspect-ratio sol-gel structures by micro transfer molding,” Chem. Mater. 20(8), 2662–2668 (2008). [CrossRef]
  29. A. Llobera, I. Salinas, I. Garcés, A. Merlos, and C. Domínguez, “Effect of wall tilt on the optical properties of integrated directional couplers,” Opt. Lett. 27(8), 601–603 (2002). [CrossRef]
  30. A. Llobera, V. Seidemann, J. A. Plaza, V. J. Cadarso, and S. Büttgenbach, “SU-8 optical accelerometers,” J. MicroElectro. Mechan. Syst. 16(1), 111–121 (2007). [CrossRef]
  31. V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008). [CrossRef] [PubMed]
  32. E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: applications in materials science,” JACS 118(24), 5722–5731 (1996). [CrossRef]
  33. M. Fikry, M.M. Omar, and L.Z. Ismail, “Effect of host medium on the fluorescence emission intensity of rhodamine b in liquid and solid phase,” J. Fluoresc. 19(7), 41–746 (2009). [CrossRef]
  34. A. Entwistle and M. Noble, “The use of Lucifer yellow, bodipy, FITC, TRITC, RITC and Texas Red for dual immunolabeling visualized with a confocal scanning laser microscope,” J. Microsc. 168, 219–238 (1992). [CrossRef]
  35. O. Valdes-Aguilera and D. C. Neckers, “Aggregation phenomena in xanthene dyes,” Acc. Chem. Res. 22(5), 171–177 (1989). [CrossRef]
  36. J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney, “Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides,” Adv. Funct. Mater. 17(10), 1654–1662 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited