OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5063–5076

Breakdown delay-based depletion mode silicon modulator with photonic hybrid-lattice resonator

Maoqing Xin, Ching Eng Png, and Aaron J. Danner  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5063-5076 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact silicon electro-optic modulator that operates in the breakdown delay based depletion mode is introduced. This operation mode has not previously been utilized for optical modulators, and represents a way to potentially achieve much higher modulation speeds and carrier extraction efficiencies without sacrificing energy efficiency, which is a critical criterion for realizing miniaturized sub-THz modulation components in silicon. Our study shows a speed of at least 238 GHz modulation is achievable along with an ultra-low energy consumption of 26.6 fJ/bit in a simple planar P+PNN+ diode example structure, which is embedded in a 2D hybrid photonic lattice mode gap resonator. The optical resonator itself is only 69 µm2 in footprint and is designed for optimized electro-optic sensitivity and conversion efficiency with reduced carrier scattering. Both the static and dynamic device performance are backed up by fully integrated 3D optical and 3D electrical numerical results. The compact device dimensions and low energy consumption are favorable to high density photonic integration.

© 2011 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(250.5300) Optoelectronics : Photonic integrated circuits
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Optical Devices

Original Manuscript: January 6, 2011
Revised Manuscript: February 21, 2011
Manuscript Accepted: February 21, 2011
Published: March 2, 2011

Maoqing Xin, Ching Eng Png, and Aaron J. Danner, "Breakdown delay-based depletion mode silicon modulator with photonic hybrid-lattice resonator," Opt. Express 19, 5063-5076 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Rodin, U. Ebert, A. Minarsky, and I. Grekhov, “Theory of superfast fronts of impact ionization in semiconductor structures,” J. Appl. Phys. 102(3), 034508 (2007). [CrossRef]
  2. R. A. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  4. B. Jalali, S. Fathpour, and K. Tsia, “Green silicon photonics,” Opt. Photon. News 20(6), 18–23 (2009). [CrossRef]
  5. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010). [CrossRef]
  6. C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96(11), 6008–6015 (2004). [CrossRef]
  7. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  8. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  9. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008). [CrossRef] [PubMed]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  11. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef]
  12. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009). [CrossRef] [PubMed]
  13. Q. Xu, “Silicon dual-ring modulator,” Opt. Express 17(23), 20783–20793 (2009). [CrossRef] [PubMed]
  14. M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Theoretical study of a cross waveguide resonator-based silicon electro-optic modulator with low power consumption,” J. Opt. Soc. Am. B 26(11), 2176–2180 (2009). [CrossRef]
  15. J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express 17(1), 304–313 (2009). [CrossRef] [PubMed]
  16. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology-a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009). [CrossRef]
  17. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16(6), 4177–4191 (2008). [CrossRef] [PubMed]
  18. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE 2008), pp. 4 - 6.
  19. T. Asano, B.-S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q Nanocavities in Two-Dimensional Photonic Crystal Slabs,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1123–1134 (2006). [CrossRef]
  20. D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005). [CrossRef] [PubMed]
  21. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  22. N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, and K. Asakawa, “High transmission recovery of slow light in a photonic crystal waveguide using a hetero groupvelocity waveguide,” Opt. Express 15(13), 7974–7983 (2007). [CrossRef] [PubMed]
  23. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007). [CrossRef] [PubMed]
  24. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90(7), 071105 (2007). [CrossRef]
  25. ATLAS user’s manual, SILVACO International, Santa Clara, California.
  26. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, Inc., 2007).
  27. S. L. Konsek and T. P. Pearsall, “Dynamics of electron tunneling in semiconductor nanostructures,” Phys. Rev. B 67(4), 045306 (2003). [CrossRef]
  28. F. Zhang, L. Shi, C. Li, W. Yu, and X. Sun, “A high-power solid-state p+–n–n+ diode for picosecond-range closing switching,” Semicond. Sci. Technol. 20(10), 991–997 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited