OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5077–5085

Ultra-high resolution resonant C-shaped aperture nano-tip

Yao-Te Cheng, Yuzuru Takashima, Yin Yuen, Paul C. Hansen, J. Brian Leen, and Lambertus Hesselink  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5077-5085 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a new optical near-field transducer comprised of a metallic nano-antenna extending from the ridge of a C-shaped metallic nano-aperture. Finite-difference time domain simulations predict that the C-aperture nano-tip (CAN-Tip) provides high intensity (650x), high optical resolution (~λ/60), and background-free near-field illumination at a wavelength of 980 nm. The CAN-Tip has an aperture resonance and tip antenna resonance which may be tuned independently, so the structure can be made resonant at ultraviolet wavelengths without being unduly small. This near-field optical resolution of 16.1 nm has been experimentally confirmed by employing the CAN-Tip as an NSOM probe.

© 2011 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(180.4243) Microscopy : Near-field microscopy
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: January 6, 2011
Revised Manuscript: February 19, 2011
Manuscript Accepted: February 21, 2011
Published: March 2, 2011

Yao-Te Cheng, Yuzuru Takashima, Yin Yuen, Paul C. Hansen, J. Brian Leen, and Lambertus Hesselink, "Ultra-high resolution resonant C-shaped aperture nano-tip," Opt. Express 19, 5077-5085 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Shi and L. Hesselink, “Design of a C aperture to achieve λ/10 resolution and resonant transmission,” J. Opt. Soc. Am. B 21(7), 1305–1317 (2004). [CrossRef]
  2. L. Sun and L. Hesselink, “Low-loss subwavelength metal C-aperture waveguide,” Opt. Lett. 31(24), 3606–3608 (2006). [CrossRef] [PubMed]
  3. E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).
  4. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  5. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002). [CrossRef]
  6. X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002). [CrossRef]
  7. Z. Rao, L. Hesselink, and J. S. Harris, “High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics,” Opt. Lett. 32(14), 1995–1997 (2007). [CrossRef] [PubMed]
  8. K. Tanaka and M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233(4-6), 231–244 (2004). [CrossRef]
  9. J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010). [CrossRef]
  10. U. C. Fischer, J. Koglin, and H. Fuchs, “The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution,” J. Microsc. 176, 231–237 (1994). [CrossRef]
  11. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]
  12. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004). [CrossRef] [PubMed]
  13. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007). [CrossRef] [PubMed]
  14. H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81(26), 5030–5032 (2002). [CrossRef]
  15. K. Tanaka, M. Tanaka, and T. Sugiyama, “Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics,” Appl. Phys. Lett. 87(15), 151116 (2005). [CrossRef]
  16. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005). [CrossRef] [PubMed]
  17. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  18. B. Hou, X. Q. Liao, and J. K. S. Poon, “Resonant infrared transmission and effective medium response of subwavelength H-fractal apertures,” Opt. Express 18(4), 3946–3951 (2010). [CrossRef] [PubMed]
  19. P. Hansen, L. Hesselink, and B. Leen, “Design of a subwavelength bent C-aperture waveguide,” Opt. Lett. 32(12), 1737–1739 (2007). [CrossRef] [PubMed]
  20. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009). [CrossRef] [PubMed]
  21. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995). [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), Chap. 8.
  23. J. A. Matteo and L. Hesselink, “Fractal extensions of near-field aperture shapes for enhanced transmission and resolution,” Opt. Express 13(2), 636–647 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited