OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5105–5117

Investigation on reconstruction methods applied to 3D terahertz computed tomography

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5105-5117 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



3D terahertz computed tomography has been performed using a monochromatic millimeter wave imaging system coupled with an infrared temperature sensor. Three different reconstruction methods (standard back-projection algorithm and two iterative analysis) have been compared in order to reconstruct large size 3D objects. The quality (intensity, contrast and geometric preservation) of reconstructed cross-sectional images has been discussed together with the optimization of the number of projections. Final demonstration to real-life 3D objects has been processed to illustrate the potential of the reconstruction methods for applied terahertz tomography.

© 2011 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(120.5800) Instrumentation, measurement, and metrology : Scanners
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(110.6795) Imaging systems : Terahertz imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Imaging Systems

Original Manuscript: January 19, 2011
Revised Manuscript: February 16, 2011
Manuscript Accepted: February 16, 2011
Published: March 2, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, "Investigation on reconstruction methods applied to 3D terahertz computed tomography," Opt. Express 19, 5105-5117 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007). [CrossRef]
  2. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003). [CrossRef] [PubMed]
  3. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005). [CrossRef]
  4. K. Fukunaga and M. Picollo, “Terahertz spectroscopy applied to the analysis of artists materials,” Appl. Phys., A Mater. Sci. Process. 100, 591–597 (2010). [CrossRef]
  5. E. Abraham, A. Younus, J.-C. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100, 585–590 (2010). [CrossRef]
  6. S. Y. Huang, Y. X. J. Wang, D. K. W. Yeung, A. T. Ahuja, Y. T. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149–160 (2009). [CrossRef]
  7. J. Takayanagi, H. Jinno, S. Ichino, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser,” Opt. Express 17, 7549–7555 (2009). [CrossRef] [PubMed]
  8. K. Iwaszczuk, H. Heiselberg, and P. U. Jepsen, “Terahertz radar cross section measurements,” Opt. Express 18, 26399–26408 (2010). [CrossRef] [PubMed]
  9. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002). [CrossRef]
  10. E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010). [CrossRef]
  11. S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003). [CrossRef]
  12. S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys. 37, R1–R36 (2004). [CrossRef]
  13. M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005). [CrossRef]
  14. X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digit. Signal Process. 19, 750–763 (2009). [CrossRef]
  15. A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010). [CrossRef]
  16. K. L. Nguyen, M. L. Johns, L. F. Gladden, C. H. Worral, P. Alexander, H. E. Beere, M. Pepper, D. A. Ritchie, J. Alton, S. Barbieri, and E. H. Linfield, “Three-dimensional imaging with a terahertz quantum cascade laser,” Opt. Express 14, 2123–2129 (2006). [CrossRef] [PubMed]
  17. A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J.-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE 7837, 783709 (2010).
  18. N. Sunaguchi, Y. Sasaki, N. Maikusa, M. Kawai, T. Yuasa, and C. Otani, “Depth-resolving terahertz imaging with tomosynthesis,” Opt. Express 17, 9558–9570 (2009). [CrossRef] [PubMed]
  19. T. Yasuda, T. Yasui, T. Araki, and E. Abraham, “Real-time two-dimensional terahertz tomography of moving objects,” Opt. Commun. 267, 128–136 (2006). [CrossRef]
  20. T. Yasui, K. Sawanaka, A. Ihara, E. Abraham, M. Hashimoto, and T. Araki, “Real-time terahertz color scanner for moving objects,” Opt. Express 16, 1208–1221 (2008). [CrossRef] [PubMed]
  21. G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized Tomography (Academic Press Inc., 1980).
  22. A. H. Andersen, and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrason. Imaging 6, 81–94 (1984). [CrossRef] [PubMed]
  23. L. A. Shepp, and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982). [CrossRef] [PubMed]
  24. H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994). [CrossRef] [PubMed]
  25. C. Pradere, J.-P. Caumes, D. Balageas, S. Salort, E. Abraham, B. Chassagne, and J.-C. Batsale, “Photothermal converters for quantitative 2D and 3D real-time terahertz imaging,” Quant. Infrared Thermog. 7, 217–235 (2010). [CrossRef]
  26. P. Toft, “The Radon Transform: Theory and Implementation,” Ph.D. thesis, Department of Mathematical Modelling, Section for Digital Signal Processing, Technical University of Denmark (1996).
  27. J. Radon, “¨Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad.Wiss. Leipzig, Math-Phys. Kl 69, 262–277 (1917). In German. An english translation can be found in S. R. Deans: The Radon Transform and Some of Its Applications.
  28. R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol. 29, 471–481 (1970). [CrossRef] [PubMed]
  29. B. Recur, “Qualité et Précision en Reconstruction Tomographique: Algorithmes et Applications,” Ph.D. thesis, LaBRI, Bordeaux 1 University (2010).
  30. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (322 KB)     
» Media 2: MOV (285 KB)     
» Media 3: MOV (215 KB)     
» Media 4: MOV (631 KB)     
» Media 5: MOV (371 KB)     
» Media 6: MOV (354 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited