OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5143–5148

Wavelength tracking with thermally controlled silicon resonators

Ciyuan Qiu, Jie Shu, Zheng Li, Xuezhi Zhang, and Qianfan Xu  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5143-5148 (2011)
http://dx.doi.org/10.1364/OE.19.005143


View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate feedback controlling of the resonant wavelength of a silicon dual-ring resonator. The feedback signal is the difference in optical scattering from the two coupled microring resonators, and the control mechanism is based on thermo-optic tuning with micro-heaters. This control scheme keeps the central wavelength of the resonator aligning with the input wavelength, which can be used to compensate fabrication variations, environmental temperature shift and the drift of laser wavelength. This feedback control scheme allows microring-based electro-optic modulators to be used in a dynamic environment.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: January 5, 2011
Revised Manuscript: February 24, 2011
Manuscript Accepted: February 28, 2011
Published: March 3, 2011

Citation
Ciyuan Qiu, Jie Shu, Zheng Li, Xuezhi Zhang, and Qianfan Xu, "Wavelength tracking with thermally controlled silicon resonators," Opt. Express 19, 5143-5148 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  2. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef]
  3. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators andswitches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE 2008), pp. 4– 6.
  4. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  5. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009). [CrossRef]
  6. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  7. P. Alipour, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “Titania-Clad Microresonators on SOIWith Athermal Performance,” In Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS 2010), paper JThE44.
  8. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010). [CrossRef] [PubMed]
  9. Q. Xu, “Silicon dual-ring modulator,” Opt. Express 17(23), 20783–20793 (2009). [CrossRef] [PubMed]
  10. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4 x 4 wavelengthreconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601–044608 (2008). [CrossRef]
  11. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32(22), 3361–3363 (2007). [CrossRef] [PubMed]
  12. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  13. J. M. Elson, “Diffraction and diffuse scattering from dielectric multilayers,” J. Opt. Soc. Am. A 69, 682–694 (1976).
  14. J. A. Sánchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8(8), 1270–1286 (1991). [CrossRef]
  15. M. Nieto-Vesperinas and J. M. Soto-Crespo, “Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surfaces,” Opt. Lett. 12(12), 979–981 (1987). [CrossRef] [PubMed]
  16. L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008). [CrossRef] [PubMed]
  17. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]
  18. Q. Xu, P. Dong, and M. Lipson, “Breaking the Delay-Bandwidth Limit in a Photonic Structure,” Nat. Phys. 3(6), 406–410 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited