OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5156–5162

Luneburg lens in silicon photonics

Andrea Di Falco, Susanne C. Kehr, and Ulf Leonhardt  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5156-5162 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (941 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

© 2011 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.7390) Optical devices : Waveguides, planar
(350.6980) Other areas of optics : Transforms

ToC Category:
Optical Design and Fabrication

Original Manuscript: January 19, 2011
Revised Manuscript: February 21, 2011
Manuscript Accepted: February 21, 2011
Published: March 3, 2011

Andrea Di Falco, Susanne C. Kehr, and Ulf Leonhardt, "Luneburg lens in silicon photonics," Opt. Express 19, 5156-5162 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  2. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, 1964).
  3. U. Leonhardt and T. G. Philbin, Geometry and Light: The Science of Invisibility (Dover, 2010).
  4. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110–112 (2009). [CrossRef]
  5. P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, and F. J. Garcia-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010). [CrossRef] [PubMed]
  6. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010). [CrossRef] [PubMed]
  7. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Maxwell fish-eye and Eaton lenses emulated by microdroplets,” Opt. Lett. 35, 3396–3398 (2010). [CrossRef] [PubMed]
  8. S. Combleet, Microwave Optics: The Optics of Microwave Antenna Design (Academic Press, 1976).
  9. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, 1981).
  10. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010). [CrossRef]
  11. H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010). [CrossRef] [PubMed]
  12. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. (2011), doi:10.1038/nnano.2010.282. [CrossRef] [PubMed]
  13. M. Lipson, “Guiding, modulating and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005). [CrossRef]
  14. J. C. Minano, “Perfect imaging in a homogeneous threedimensional region,” Opt. Express 14, 9627–9635 (2006). [CrossRef] [PubMed]
  15. U. Leonhardt, “Perfect imaging without negative refraction,” N. J. Phys. 11, 093040 (2009). [CrossRef]
  16. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  17. E. Colombini, “Design of thin-film Luneburg lenses for maximum focal length control,” Appl. Opt. 20, 3589–3593 (1981). [CrossRef] [PubMed]
  18. E. Colombini, “Index-profile computation for the generalized Luneburg lens,” J. Opt. Soc. Am. 71, 1403–1405 (1981).
  19. S. K. Yao and D. B. Anderson, “Shadow sputtered diffraction-limited waveguide Luneburg lenses,” Appl. Phys. Lett. 33, 307–309 (1978). [CrossRef]
  20. S. K. Yao, D. B. Anderson, R. R. August, B. R. Youmans, and C. M. Oania, “Guided-wave optical thin-film Luneburg lenses: fabrication technique and properties,” Appl. Opt. 18, 4067–4079 (1979). [CrossRef] [PubMed]
  21. F. Zernike, “Luneburg lens for optical waveguide use,” Opt. Commun. 12, 379–381 (1974). [CrossRef]
  22. S. Takahashi, C. Chang, S. Y. Yang, and G. Barbastathis, “Design and fabrication of dielectric nanostructured Luneburg lens in optical frequencies” in Optical MEMS and Nanophotonics, (IEEE Photonics Society, 2010), Paper Th1–1, pp. 177–178.
  23. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef] [PubMed]
  24. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009). [CrossRef]
  25. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef] [PubMed]
  26. L. H. Gabrielli, U. Leonhardt, and M. Lipson, “Perfect imaging in the optical domain using dielectric materials,” arXiv:1007.2564.
  27. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test, (SPIE tutorial text, Washington, 2004).
  28. C. Reardon, A. Di Falco, K. Welna, and T. F. Krauss, “Integrated polymer microprisms for free space optical beam deflecting,” Opt. Express 17, 3423–3428 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited