OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5244–5259

Reconfigurable optical directed-logic circuits using microresonator-based optical switches

Qianfan Xu and Richard Soref  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5244-5259 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a reconfigurable optical directed logic architecture that offers several significant improvements over the original directed logic presented by Hardy and Shamir. Specific embodiments of on-chip, waveguided, large-scale-integrated, cellular optical directed logic fabrics are proposed and analyzed. Five important logic functions are presented as examples to show that the same switch fabric can be reconfigured to perform different logic functions.

© 2011 OSA

OCIS Codes
(130.3750) Integrated optics : Optical logic devices
(200.4660) Optics in computing : Optical logic
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Optics in Computing

Original Manuscript: January 12, 2011
Revised Manuscript: February 16, 2011
Manuscript Accepted: February 17, 2011
Published: March 4, 2011

Qianfan Xu and Richard Soref, "Reconfigurable optical directed-logic circuits using microresonator-based optical switches," Opt. Express 19, 5244-5259 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007). [CrossRef] [PubMed]
  2. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010). [CrossRef] [PubMed]
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  4. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  5. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010). [CrossRef] [PubMed]
  6. W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), Technical Digest (CD) (Optical Society of America, 2010), paper CThJ2014. [PubMed]
  7. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology,” IEEE J. Solid-State Circuits 41(12), 2945–2955 (2006). [CrossRef]
  8. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004). [CrossRef]
  9. Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006). [CrossRef] [PubMed]
  10. R. C. Williamson, “Sensitivity-bandwidth product for electro-optic modulators,” Opt. Lett. 26(17), 1362–1363 (2001). [CrossRef]
  11. M. A. Popovic, “Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations,” in Integrated photonics research, silicon and nanophotonics (Optical Society of America, 2010), IMC2.
  12. J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. O. Ilday, F. X. Kartner, and J. Yasaitis, “High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform,” Appl. Phys. Lett. 87(10), 103501 (2005). [CrossRef]
  13. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  14. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  15. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010). [CrossRef] [PubMed]
  16. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  17. A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4x 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 mu m CMOS SOI technology,” IEEE J. Solid-State Circuits 42(12), 2736–2744 (2007). [CrossRef]
  18. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  19. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010). [CrossRef] [PubMed]
  20. M. C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006). [CrossRef] [PubMed]
  21. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  22. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007). [CrossRef]
  23. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  24. C. Kochar, A. Kodi, and A. Louri, “Proposed low-power high-speed microring resonator-based switching technique for dynamically reconfigurable optical interconnects,” IEEE Photon. Technol. Lett. 19(17), 1304–1306 (2007). [CrossRef]
  25. Q. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30(20), 2733–2735 (2005). [CrossRef] [PubMed]
  26. A. G. J. S. Levy, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Monolithically integrated multiple wavelength oscillator on silicon,” arXiv:0907.1077v2 [physics.optics] (2009).
  27. J. Van Campenhout, L. Liu, P. Rojo Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. D. Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008). [CrossRef]
  28. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007). [CrossRef] [PubMed]
  29. A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited