OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5319–5326

Spatial quantizing a subwavelength slit to upgrade its optical properties

Yan Guo, Jianjun Yang, and Shengjiang Chang  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5319-5326 (2011)
http://dx.doi.org/10.1364/OE.19.005319


View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a spatial quantization method to discretize a single subwavelength metallic slit into identical unit chains and investigate its transmission properties. Finite-difference time-domain simulations suggest that the formation of multiple fundamental plasmon resonances and their mutual coupling processes play dominant roles in the quantized structure, which eventually alters the surface plasmon energy propagation into a hopping style. Through adjusting the groove geometrical parameters, the optical transmission can be further increased by as high as about 1000% or suppressed to zero when compared with a corresponding untreated slit. We expect these findings to have potential applications in subwavelength optics.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(310.6860) Thin films : Thin films, optical properties
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 18, 2010
Revised Manuscript: January 21, 2011
Manuscript Accepted: February 19, 2011
Published: March 7, 2011

Citation
Yan Guo, Jianjun Yang, and Shengjiang Chang, "Spatial quantizing a subwavelength slit to upgrade its optical properties," Opt. Express 19, 5319-5326 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5319


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007). [CrossRef]
  3. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  4. I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79(16), 161406 (2009). [CrossRef]
  5. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006). [CrossRef]
  6. S. Collin, F. Pardo, and J.-L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express 15(7), 4310–4320 (2007). [CrossRef] [PubMed]
  7. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef]
  8. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003). [CrossRef] [PubMed]
  9. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004). [CrossRef] [PubMed]
  10. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006). [CrossRef]
  11. Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008). [CrossRef] [PubMed]
  12. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Transmission of microwaves through a stepped subwavelength slit,” Appl. Phys. Lett. 91(25), 251106 (2007). [CrossRef]
  13. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  14. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008). [CrossRef] [PubMed]
  15. Y. Wang, Y. Wang, Y. Zhang, and S. Liu, “Transmission through metallic array slits with perpendicular cuts,” Opt. Express 17(7), 5014–5022 (2009). [CrossRef] [PubMed]
  16. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  17. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002). [CrossRef]
  18. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12(25), 6106–6121 (2004). [CrossRef] [PubMed]
  19. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007). [CrossRef]
  20. E. Feigenbaum and M. Orenstein, “Perfect 4-way splitting in nano plasmonic X-junctions,” Opt. Express 15(26), 17948–17953 (2007). [CrossRef] [PubMed]
  21. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  22. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B 76(11), 113405 (2007). [CrossRef]
  23. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited