OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5327–5338

Comprehensive modeling of THz microscope with a sub-wavelength source

Hungyen Lin, Christophe Fumeaux, Benjamin Seam Yu Ung, and Derek Abbott  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5327-5338 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The sub-wavelength THz emission point on a nonlinear electro-optical crystal, used in broadband THz near-field emission microscopy, is computationally modeled as a radiating aperture of Gaussian intensity profile. This paper comprehensively studies the Gaussian aperture model in the THz near-field regime and validates the findings with dual-axis knife-edge experiments. Based on realistic parameter values, the model allows for THz beam characterisation in the near-field region for potential microscopy applications. An application example is demonstrated by scanning over a cyclic-olefin copolymer sample containing grooves placed sub-wavelengths apart. The nature of THz microscopy in the near-field is highly complex and traditionally based on experiments. The proposed validated numerical model therefore aids in the quantitative understanding of the performance parameters. Whilst in this paper we demonstrate the model on broadband electro-optical THz near-field emission microscopy, the model may apply without a loss of generality to other types of THz near-field focused beam techniques.

© 2011 Optical Society of America

OCIS Codes
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:

Original Manuscript: November 19, 2010
Revised Manuscript: January 5, 2011
Manuscript Accepted: February 9, 2011
Published: March 7, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Hungyen Lin, Christophe Fumeaux, Benjamin Seam Yu Ung, and Derek Abbott, "Comprehensive modeling of THz microscope with a sub-wavelength source," Opt. Express 19, 5327-5338 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004). [CrossRef]
  2. M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  3. T. Yuan, J. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45, 417–425 (2004). [CrossRef]
  4. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007). [CrossRef]
  5. S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998). [CrossRef]
  6. O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000). [CrossRef]
  7. O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000). [CrossRef]
  8. S. Mair, B. Gompf, and M. Dressel, “Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer,” Appl. Phys. Lett. 84, 1219–1221 (2004). [CrossRef]
  9. Y. Kawano, and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008). [CrossRef]
  10. N. van der Valk, and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002). [CrossRef]
  11. K. Wang, A. Barkan, and D. Mittleman, “Sub-wavelength resolution using apertureless terahertz near-field microscopy,” CLEO, CMP5 (2003).
  12. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003). [CrossRef]
  13. T. Yuan, H. Park, J. Xu, H. Han, and X.-C. Zhang, “Field induced THz wave emission with nanometer resolution,” Proc. SPIE 5649, 1–8 (2005). [CrossRef]
  14. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008). [CrossRef] [PubMed]
  15. R. Kersting, F. Buersgens, G. Acuna, and G. Cho, “Terahertz near-field microscopy,” Advances in Solid State Physics (Springer Berlin / Heidelberg, 2008). [CrossRef]
  16. H. G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430–3438 (2008). [CrossRef] [PubMed]
  17. M. W¨achter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009). [CrossRef]
  18. K. Wynne, and D. Jaroszynski, “Superluminal terahertz pulses,” Opt. Lett. 24, 25–27 (1999). [CrossRef]
  19. Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Express 25, 1122–1124 (2000).
  20. T. Yuan, S. P. Mickan, J. Xu, D. Abbott, and X.-C. Zhang “Towards an apertureless electro-optic T-ray microscope,” CLEO, 637 – 638 (2002).
  21. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003). [CrossRef] [PubMed]
  22. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. Planken, “Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures,” Opt. Express 16, 7407–7417 (2008). [CrossRef] [PubMed]
  23. A. Bitzer, “andM.Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92, 231101 (2008). [CrossRef]
  24. R. Lecaque, S. Gresillon, and C. Boccara, “THz emission Microscopy with sub-wavelength broadband source,” Opt. Express 16, 4731–4738 (2008). [CrossRef] [PubMed]
  25. T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010). [CrossRef]
  26. H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as gaussian apertures,” Opt. Express 18, 17672–17683 (2010). [CrossRef] [PubMed]
  27. J. Xu, and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067–1069 (1999). [CrossRef]
  28. G. Dakovski, B. Kubera, and J. Shan, “Localized terahertz generation via optical rectification in ZnTe,” J. Opt. Soc. Am. B 22, 1667–1670 (2005). [CrossRef]
  29. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, USA, 2008).
  30. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 1991). [CrossRef]
  31. M. I. Bakunov, S. B. Bodrov, and A. V. Maslov, “Temporal Dynamics of Optical-to-Terahertz Conversion in Electro-Optic Crystal,” CLEO, JWA93 (2007).
  32. P. Bonnet, X. Ferrieres, B. L. Michielsen, P. Klotz, and J. L. Roumigui`eres, Finite-volume time domain method, in Time Domain Electromagnetics (S. M. Rao, Ed. San Diego, CA: Academic Press, 1999).
  33. D. Baumann, C. Fumeaux, C. Hafner, and E. P. Li, “A modular implementation of dispersive materials for timedomain simulations with application to gold nanospheres at optical frequencies,” Opt. Express 17, 15186–15200 (2009). [CrossRef] [PubMed]
  34. C. Fumeaux, D. Baumann, S. Atakaramians, and E. Li, “Considerations on paraxial Gaussian beam source conditions for time-domain full-wave simulations,” 25th Annual Review of Progress in Applied Computational Electromagnetics, 401 – 406 (2009).
  35. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  36. C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, “A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes,” IEEE Trans. Microw. Theory Tech. 52, 1067–1076 (2004). [CrossRef]
  37. C. Fumeaux, K. Sankaran, and R. Vahldieck, “Spherical perfectly matched absorber for finite-volume 3-D domain truncation,” IEEE Trans. Microw. Theory Tech. 55, 2773–2781 (2007). [CrossRef]
  38. B. M. Fischer, “Broadband THz Time-Domain Spectroscopy of Biomolecules,” Ph.D. Thesis, University of Freiburg (2005).
  39. H. Lin, B. M. Fischer, and D. Abbott, “Comparative simulation study of ZnTe heating effects in focused THz radiation generation,” 35th International Conference on Infrared, Millimeter, and TerahertzWaves, 63 – 64 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited