OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5386–5396

Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging

Kuo-Chih Chiu, Chun-Yu Lin, Chen Yuan Dong, and Shean-Jen Chen  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5386-5396 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, the optimal condition of a silver (Ag) film deposited on a cover slip for surface plasmon-coupled emission (SPCE) induced two-photon excited fluorescence (TPEF) based on an objective-based, total internal reflection (TIR) microscope was investigated. According to the theoretical simulations of local electric field enhancement and fluorescence coupled emission efficiency, the thickness of the Ag film should be about 40 nm in order to maximize the TPEF collection efficiency by the objective. The deposited Ag film with a germanium seed layer on a cover slip exhibits additional improvement in surface smoothness by reducing variations in surface roughness to below 1.0 nm, thereby reduces local hot spots which degrade the image uniformity. Moreover, an Ag film with a 20 nm-thick SiO2 spacer not only prevents damage caused through interaction with the aqueous solution under high laser power irradiance, but also reduces the fluorescence quenching effect by the Ag film. By optimizing the Ag film thickness, surface smoothness, and a protective dielectric spacer, efficient TIR TPEF imaging can be achieved through SPCE.

© 2011 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: December 20, 2010
Revised Manuscript: February 18, 2011
Manuscript Accepted: February 24, 2011
Published: March 7, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Kuo-Chih Chiu, Chun-Yu Lin, Chen Yuan Dong, and Shean-Jen Chen, "Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging," Opt. Express 19, 5386-5396 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32(8), 2372–2377 (2004). [CrossRef] [PubMed]
  2. F. Yu, B. Persson, S. Löfås, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76(22), 6765–6770 (2004). [CrossRef] [PubMed]
  3. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004). [CrossRef] [PubMed]
  4. O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B Chem. 107(1), 148–153 (2005). [CrossRef]
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
  6. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007). [CrossRef] [PubMed]
  7. C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18(12), 12807–12817 (2010). [CrossRef] [PubMed]
  8. V. Kapaklis, P. Poulopoulos, V. Karoutsos, T. Manouras, and C. Politis, “Growth of thin Ag films produced by radio frequency magnetron sputtering,” Thin Solid Films 510(1-2), 138–142 (2006). [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005). [CrossRef] [PubMed]
  10. H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15(3), 1076–1083 (2007). [CrossRef] [PubMed]
  11. Y. Chi, E. Lay, T.-Y. Chou, Y.-H. Song, and A. J. Carty, “Deposition of silver thin films using the pyrazolate complex [Ag(3,5-(CF3)2C3HN2)]3,” Chem. Vap. Deposition 11(4), 206–212 (2005). [CrossRef]
  12. N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009). [CrossRef]
  13. H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4(6), 3139–3146 (2010). [CrossRef] [PubMed]
  14. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009). [CrossRef] [PubMed]
  15. C. D. Geddes, A. Parfenov, D. Roll, M. J. Uddin, and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 13(6), 453–457 (2003). [CrossRef] [PubMed]
  16. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001). [CrossRef] [PubMed]
  17. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009). [CrossRef] [PubMed]
  18. M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008). [CrossRef] [PubMed]
  19. I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005). [CrossRef]
  20. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465(1-3), 92–95 (2008). [CrossRef]
  21. D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49(5), 875–879 (2010). [CrossRef] [PubMed]
  22. D. G. Zhang, X.-C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by Rhodamine B molecules doped in a PMMA stripe,” Opt. Lett. 35(3), 408–410 (2010). [CrossRef] [PubMed]
  23. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35(4), 517–519 (2010). [CrossRef] [PubMed]
  24. E. D. Palik, Handbook of Optical Constant of Solids (Academic, 1985).
  25. H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15(5), 1192–1201 (1998). [CrossRef]
  26. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34(9), 1612–1631 (1998). [CrossRef]
  27. E. Fontana and R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B Condens. Matter 37(7), 3164–3182 (1988). [CrossRef] [PubMed]
  28. Y.-D. Su, K.-C. Chiu, N.-S. Chang, H.-L. Wu, and S.-J. Chen, “Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy,” Opt. Express 18(19), 20125–20135 (2010). [CrossRef] [PubMed]
  29. G. Valette, “Silver-water interactions: Part I. Model of the inner layer at the metal/water interface,” J. Electroanal. Chem. 230(1-2), 189–204 (1987). [CrossRef]
  30. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. I. Plane-wave spectrum approach to modeling classical effects,” J. Opt. Soc. Am. B 14(5), 1149–1159 (1997). [CrossRef]
  31. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. II. Enhanced fluorescence in optical waveguide sensors,” J. Opt. Soc. Am. B 14(5), 1160–1166 (1997). [CrossRef]
  32. D. G. Zhang, K. J. Moh, and X.-C. Yuan, “Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules,” Opt. Express 18(12), 12185–12190 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited