OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5480–5488

Achieving sub-Rayleigh resolution via thresholding

Sara Mouradian, Franco N. C. Wong, and Jeffrey H. Shapiro  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5480-5488 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (745 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffraction from a finite-diameter entrance pupil imposes the Rayleigh bound on the spatial resolution achievable by a conventional imaging system. We demonstrate resolution beyond this limit through unstructured scanning of a focused laser beam across an object together with dynamic application of a threshold N less than the maximum count level Nmax. Experimental results show sub-Rayleigh resolution enhancement by a factor of [ln(Nmax/N)]1/2.

© 2011 Optical Society of America

OCIS Codes
(100.2980) Image processing : Image enhancement
(100.6640) Image processing : Superresolution

ToC Category:
Photonic Crystals

Original Manuscript: December 20, 2010
Revised Manuscript: February 23, 2011
Manuscript Accepted: February 27, 2011
Published: March 8, 2011

Sara Mouradian, Franco N. C. Wong, and Jeffery H. Shapiro, "Achieving sub-Rayleigh resolution via thresholding," Opt. Express 19, 5480-5488 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Rayleigh, “Investigations in optics with special reference to the spectroscope,” Philos. Mag. 8, 261–274 (1879).
  2. C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916). [CrossRef]
  3. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000). [CrossRef] [PubMed]
  4. J. P. Dowling, “Quantum optical metrology—the lowdown on high-N00N States,” Contemp. Phys. 49, 125–143 (2008). [CrossRef]
  5. V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, “Sub-Rayleigh-diffraction-bound quantum imaging,” Phys. Rev. A 79, 013827 (2009). [CrossRef]
  6. M. Tsang, “Quantum imaging beyond the diffraction limit by optical centroid measurements,” Phys. Rev. Lett. 102, 253601 (2009). [CrossRef] [PubMed]
  7. K. Wang and D.-Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70,041801(R) (2004). [CrossRef]
  8. P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, “Quantum lithography with classical light,” Phys. Rev. Lett. 96, 163603 (2006). [CrossRef] [PubMed]
  9. S. J. Bently and R. W. Boyd, “Nonlinear optical lithography with ultra-high sub-Rayleigh resolution,” Opt. Express 12, 5735–5740 (2004). [CrossRef]
  10. S. W. Hell, J. Soukka, and P. E. Hänninen, “Two- and multiphoton detection as an imaging mode and means of increasing the resolution in far-field light microscopy: A study based on photon-optics,” Bioimaging 3, 64–69 (1995). [CrossRef]
  11. A. J. Pearlman, A. Ling, E. A. Goldschmidt, C. F. Wildfeuer, J. Fan, and A. Migdall, “Enhancing image contrast using coherent states and photon number resolving detectors,” Opt. Express 18, 6033–6039 (2010). [CrossRef] [PubMed]
  12. D. Semwogerere and E. R. Weeks, “Confocal microscopy,” in Encyclopedia of Biomaterials and Biomedical Engineering, G. E. Wnek and G. L. Bowlin, eds. (Taylor & Francis, 2005), pp. 705–714.
  13. A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466, 647–651 (2010). [CrossRef] [PubMed]
  14. F. Guerrieri, L. Maccone, F. N. C. Wong, J. H. Shapiro, S. Tisa, and F. Zappa, “Sub-Rayleigh imaging via N-photon detection,” Phys. Rev. Lett. 105, 163602 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 3 Fig. 1 Fig. 2
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited