OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5489–5499

Fast numerical methods for the design of layered photonic structures with rough interfaces

Nikolay Komarevskiy, Leonid Braginsky, Valery Shklover, Christian Hafner, and John Lawson  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5489-5499 (2011)
http://dx.doi.org/10.1364/OE.19.005489


View Full Text Article

Enhanced HTML    Acrobat PDF (1714 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multilayer approach (MA) and modified boundary conditions (MBC) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with an arbitrary permittivity tensor. MA and MBC are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.

© 2011 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(310.4165) Thin films : Multilayer design
(160.5298) Materials : Photonic crystals
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optical Devices

History
Original Manuscript: January 28, 2011
Revised Manuscript: March 1, 2011
Manuscript Accepted: March 1, 2011
Published: March 8, 2011

Citation
Nikolay Komarevskiy, Leonid Braginsky, Valery Shklover, Christian Hafner, and John Lawson, "Fast numerical methods for the design of layered photonic structures with rough interfaces," Opt. Express 19, 5489-5499 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5489


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic crystals: molding the flow of light (Princeton Univ Pr, 2008).
  2. A. Mekis, J. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  3. V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, and C. Hafner, “High-Temperature Photonic Structures. Thermal Barrier Coatings, Infrared Sources and Other Applications,” J. Comput. Theoret. Nanosci. 5, 862 (2008).
  4. D. Berreman, “Optics in stratified and anisotropic media: 4× 4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  5. P. Yeh, Optical waves in layered media (Wiley New York, 1988).
  6. I. Abdulhalim, “Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,” J. Opt. A, Pure Appl. Opt. 1, 646 (1999). [CrossRef]
  7. F. K¨artner, N. Matuschek, T. Schibli, U. Keller, H. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997). [CrossRef] [PubMed]
  8. T. Yonte, J. Monz’on, A. Felipe, and L. S’anchez-Soto, “Optimizing omnidirectional reflection by multilayer mirrors,” J. Opt. A, Pure Appl. Opt. 6, 127–131 (2004). [CrossRef]
  9. M. del Rio and G. Pareschi, “Global optimization and reflectivity data fitting for x-ray multilayer mirrors by means of genetic algorithms,” in “Proceedings of SPIE,”, vol. 4145 (2001), vol. 4145, p. 88. [CrossRef]
  10. S. Martin, J. Rivory, and M. Schoenauer, “Synthesis of optical multilayer systems using genetic algorithms,” Appl. Opt. 34, 2247–2254 (1995). [CrossRef] [PubMed]
  11. D. Bose, E. McCorkle, C. Thompson, D. Bogdanoff, D. Prabhu, G. Allen, and J. Grinstead, “Analysis and model validation of shock layer radiation in air,” VKI LS Course on hypersonic entry and cruise vehicles, Palo Alto, California, USA (2008).
  12. D. Gerace and L. Andreani, “Low-loss guided modes in photonic crystal waveguides,” Opt. Express 13, 4939–4951 (2005). [CrossRef] [PubMed]
  13. P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” J. Opt. Soc. Am. 71, 1115–1123 (1981). [CrossRef]
  14. I. Ohlídal, “Approximate formulas for the reflectance, transmittance, and scattering losses of nonabsorbing multilayer systems with randomly rough boundaries,” J. Opt. Soc. Am. A 10, 158–171 (1993). [CrossRef]
  15. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. 13, 1024–1035 (1996). [CrossRef]
  16. D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  17. S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 45102 (2002). [CrossRef]
  18. A. Fallahi, M. Mishrikey, C. Hafner, and R. Vahldieck, “Efficient procedures for the optimization of frequency selective surfaces,” IEEE Trans. Ant. Prop. 56 (2008). [CrossRef]
  19. C. Hafner, C. Xudong, J. Smajic, and R. Vahldieck, “Efficient procedures for the optimization of defects in photonic crystal structures,” J. Opt. Soc. Am. A 24, 1177–1188 (2007). [CrossRef]
  20. J. Fröhlich, “Evolutionary optimization for computational electromagnetics,” Ph.D. thesis, ETH Zurich, IFH Laboratory (1997).
  21. O. Wiener, “Die Théorie desMischkörpers für das Feld des stationären Strömung. Abh.Math,” Physichen Klasse Königl. Säcsh. GeselWissen 32, 509–604 (1912). [PubMed]
  22. M. Mishrikey, L. Braginsky, and C. Hafner, “Light propagation in multilayered photonic structures,” J. Comput. Theor. Nanosci. 7, 1623–1630 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited