OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5500–5510

Time-domain analysis of optically controllable biphotonic gratings in azo-dye-doped cholesteric liquid crystals

Hui-Chen Yeh  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5500-5510 (2011)
http://dx.doi.org/10.1364/OE.19.005500


View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study investigated optically controllable biphotonic gratings (BGs) in azo-dye-doped cholesteric liquid crystals. The BGs were formed under the illumination of one green beam with the simultaneous irradiation of an interference field generated by two coherent red beams. This study ascribes the formation of the BGs to the green-beam-induced dye reorientation and elongation of the helical pitch through trans-cis isomerization and red-beam-induced suppression of dye reorientation and elongation of the helical pitch by cis-trans back isomerization. The diffraction characteristics strongly depended on the helical pitch of the cholesteric structure, the polarization state of the probe beam, and the relative intensity of the green and red beams. Application of the finite-difference time-domain method demonstrated that the model of photoinduced distortion of the cholesteric liquid crystal structure satisfactorily explains this dependence.

© 2011 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3710) Materials : Liquid crystals
(230.1150) Optical devices : All-optical devices

ToC Category:
Imaging Systems

History
Original Manuscript: January 19, 2011
Revised Manuscript: February 24, 2011
Manuscript Accepted: February 25, 2011
Published: March 9, 2011

Citation
Hui-Chen Yeh, "Time-domain analysis of optically controllable biphotonic gratings in azo-dye-doped cholesteric liquid crystals," Opt. Express 19, 5500-5510 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5500


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000). [CrossRef]
  2. T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003). [CrossRef]
  3. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991). [CrossRef]
  4. T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107(22), 9319–9325 (1997). [CrossRef]
  5. Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. C 5(3), 247–265 (2004). [CrossRef]
  6. Y. J. Wang and G. O. Carlisle, “Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Mater. Sci. Mater. Electron. 13(3), 173–178 (2002). [CrossRef]
  7. H. Choi, J. W. Wu, H. J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett. 88(2), 021905 (2006). [CrossRef]
  8. S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88(25), 251113 (2006). [CrossRef]
  9. T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid-crystal composites,” Appl. Opt. 47(13), 2192–2200 (2008). [CrossRef] [PubMed]
  10. C. Y. Huang, H. Y. Tsai, Y. H. Wang, C. M. Huang, K. Y. Lo, and C. R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010). [CrossRef]
  11. F. Simoni and O. Francescangeli, “Effect of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11(41), R439–R487 (1999). [CrossRef]
  12. Y. J. Wang, M. Pei, and G. O. Carlisle, “Polarization-independent photochromic diffraction in a dye-doped liquid crystal,” Opt. Lett. 28(10), 840–842 (2003). [CrossRef] [PubMed]
  13. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  14. H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000). [CrossRef]
  15. H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007). [CrossRef] [PubMed]
  16. H. C. Yeh, G. H. Chen, C. R. Lee, and T. S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007). [CrossRef]
  17. H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008). [CrossRef]
  18. T. Sasaki, A. Emoto, T. Shioda, and H. Ono, “Transmission and reflection phase gratings formed in azo-dye-doped chiral nematic liquid crystals,” Appl. Phys. Lett. 94(2), 023303 (2009). [CrossRef]
  19. S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283(9), 1726–1731 (2010). [CrossRef]
  20. A. Taflove and S. C. Gedne, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., 2005).
  21. M. R. Lee, J. R. Wang, C. R. Lee, and A. Y. G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004). [CrossRef]
  22. C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu, and A. Y. G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003). [CrossRef]
  23. E. Collett, Polarized Light: Fundamentals and Applications (Dekker, 1993).
  24. K. S. Yee, “Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).
  25. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990). [CrossRef]
  26. E. Hecht, Optics (Addison Wesley, 2002). [PubMed]
  27. C. Oh and M. J. Escuti, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express 14(24), 11870–11884 (2006). [CrossRef] [PubMed]
  28. W. Greubel, “Bistability behavior of texture in cholesteric liquid crystals in an electric field,” Appl. Phys. Lett. 25(1), 5–7 (1974). [CrossRef]
  29. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Science, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited