OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5551–5558

A reversibly tunable photonic crystal nanocavity laser using photochromic thin film

Deepak Sridharan, Ranojoy Bose, Hyochul Kim, Glenn S. Solomon, and Edo Waks  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5551-5558 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a reversibly tunable photonic crystal quantum dot laser using a photochromic thin film. The laser is composed of a photonic crystal cavity with a bare cavity Q as high as 4500 coupled to a high density ensemble of indium arsenide quantum dots. By depositing a thin layer of photochromic material on the photonic crystal cavities, the laser can be optically tuned smoothly and reversibly over a wavelength range of 2.68 nm. Lasing is observed at temperatures as high as 80 K in the 900-1000 nm near-infrared wavelength range. The spontaneous emission coupling factor is measured to be as high as β = 0.41, indicating that the laser operates in the high-β regime.

© 2011 OSA

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 13, 2010
Revised Manuscript: February 4, 2011
Manuscript Accepted: February 20, 2011
Published: March 10, 2011

Deepak Sridharan, Ranojoy Bose, Hyochul Kim, Glenn S. Solomon, and Edo Waks, "A reversibly tunable photonic crystal nanocavity laser using photochromic thin film," Opt. Express 19, 5551-5558 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  2. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008). [CrossRef]
  3. S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006). [CrossRef] [PubMed]
  4. T. Ishihara, Y. Ikemoto, T. Goto, A. Tsujimura, K. Ohkawa, and T. Mitsuyu, “Optical gain in an inhomogeneously broadened exciton system,” J. Lumin. 58(1-6), 241–243 (1994). [CrossRef]
  5. T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005). [CrossRef]
  6. J. Johansen, S. Stobbe, I. S. Nikolaev, T. L. Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Quantum efficiency of self-assembled quantum dots determined by a modified optical local density of states,” in Quantum Electronics and Laser Science Conference, 2007. QELS'07 (2008), pp. 1–2.
  7. J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77(7), 073303 (2008). [CrossRef]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  9. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, “Quantum dot photonic crystal lasers,” Electron. Lett. 38(17), 967–968 (2002). [CrossRef]
  10. H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Phys. Lett. 81, 2680–2682 (2002).
  11. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006). [CrossRef] [PubMed]
  12. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Electron. Lett. 38, 967–968 (2002).
  13. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010). [CrossRef] [PubMed]
  14. B. Ellis, I. Fushman, D. Englund, B. Zhang, Y. Yamamoto, and J. Vučković, “Dynamics of quantum dot photonic crystal lasers,” Appl. Phys. Lett. 90(15), 151102 (2007). [CrossRef]
  15. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010). [CrossRef]
  16. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. Shchekin, and D. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005). [CrossRef]
  17. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express 17(20), 18178–18183 (2009). [CrossRef] [PubMed]
  18. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010). [CrossRef]
  19. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  20. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005). [CrossRef]
  21. A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009). [CrossRef]
  22. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008). [CrossRef]
  23. B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004). [CrossRef]
  24. D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010). [CrossRef]
  25. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  26. G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (2009). [CrossRef]
  27. R. Hui, S. Benedetto, and I. Montrosset, “Near threshold operation of semiconductor lasers and resonant-type laser amplifiers,” IEEE J. Quantum Electron. 29(6), 1488–1497 (2002). [CrossRef]
  28. M. Bagheri, M. H. Shih, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, “Microcavity Laser Linewidth Close to Threshold,” IEEE J. Quantum Electron. 45(8), 945–949 (2009). [CrossRef]
  29. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009). [CrossRef] [PubMed]
  30. M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17(2), 640–648 (2009). [CrossRef] [PubMed]
  31. G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (2002). [CrossRef]
  32. H. Kim, M. T. Rakher, D. Bouwmeester, and P. M. Petroff, “Electrically pumped quantum post vertical cavity surface emitting lasers,” Appl. Phys. Lett. 94(13), 131104 (2009). [CrossRef]
  33. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30(1), 64–66 (2005). [CrossRef] [PubMed]
  34. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87(15), 157401 (2001). [CrossRef] [PubMed]
  35. T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature,” Appl. Phys. Lett. 85(8), 1326 (2004). [CrossRef]
  36. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000). [CrossRef]
  37. J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010). [CrossRef] [PubMed]
  38. N. P. Ernsting, B. Dick, and T. Arthen-Engeland, “The primary photochemical reaction step of unsubstituted indolino-spiropyrans,” Pure Appl. Chem. 62(8), 1483–1488 (1990). [CrossRef]
  39. R. C. Bertelson, i n: Photochromism, G.H. Brown (Ed.). Wilev-Interscience, New York p 45 (1969).
  40. K. Uchida, T. Ishikawa, M. Takeshita, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(thiazolyl)perfluorocyclopentenes,” Tetrahedron 54(24), 6627–6638 (1998). [CrossRef]
  41. M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) 8(8), 747–750 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited