OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5579–5586

Mid-infrared photonic crystal cavities in silicon

Raji Shankar, Rick Leijssen, Irfan Bulu, and Marko Lončar  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5579-5586 (2011)
http://dx.doi.org/10.1364/OE.19.005579


View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the design, fabrication, and characterization of silicon photonic crystal cavities realized in a silicon on insulator (SOI) platform, operating at a wavelength of 4.4 μm with a quality factor of 13,600. Cavity modes are imaged using the technique of scanning resonant scattering microscopy. To the best of our knowledge, this is the first demonstration of photonic devices fabricated in SOI and operating in the 4-5μm wavelength range.

© 2011 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: January 5, 2011
Revised Manuscript: February 25, 2011
Manuscript Accepted: March 1, 2011
Published: March 10, 2011

Citation
Raji Shankar, Rick Leijssen, Irfan Bulu, and Marko Lončar, "Mid-infrared photonic crystal cavities in silicon," Opt. Express 19, 5579-5586 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5579


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-15-15523 . [CrossRef] [PubMed]
  2. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010). [CrossRef]
  3. R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006). [CrossRef]
  4. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010). [CrossRef]
  5. B. Jalali, “Silicon Photonics Nonlinear Optics in the Mid-Infrared,” Nat. Photonics 4(8), 506–508 (2010). [CrossRef]
  6. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a Mid-infrared silicon Raman amplifier,” Opt. Express 15(22), 14355–14362 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-22-14355 . [CrossRef] [PubMed]
  7. X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010). [CrossRef]
  8. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-12-12127 . [CrossRef] [PubMed]
  9. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 um,” Appl. Phys. Lett. 97(21), 213501 (2010). [CrossRef]
  10. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  11. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  12. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87(22), 221110 (2005). [CrossRef]
  13. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009). [CrossRef]
  14. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  15. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. A. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited