OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5602–5610

Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses

Mangirdas Malinauskas, Paulius Danilevičius, and Saulius Juodkazis  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5602-5610 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3124 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate capability to structure photo-polymers with sub-wavelength resolution, ∼ 200 – 500 nm, and retrieve three-dimensional (3D) structures using a picosecond laser exposure. This alternative to commonly used ultra-short femtosecond lasers extends accessability of 3D direct write. A popular hybrid sol-gel resist SZ2080 was used for quantitative determination of structuring resolution at 1064 nm and 532 nm wavelengths and for pulses of 8–25 ps duration at the repetition rates of 0.2 – 1 MHz. Systematic study of feature size dependence of 3D suspended nano-rods shows that linear power dependence of photopolymerization on the dose-per-pulse becomes dominant at higher repetition rates (≥ 0.5 MHz) while the two-photon nonlinear absorption is still distinguishable at rates lower than 0.2 MHz and shorter pulses (≤ 8 ps). Thermal accumulation defines polymerization when cooling time of the focal volume is larger than separation between pulses. Photopolymerization and its scaling mechanisms, quality, and fidelity at tight focusing of fs-, ps-, and cw-laser radiation are revealed and explained. 3D scaffolds for biomedicine and microlenses for optical applications are fabricated by the ps-laser direct write.

© 2011 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3850) Other areas of optics : Materials processing
(160.4236) Materials : Nanomaterials

ToC Category:
Laser Microfabrication

Original Manuscript: January 24, 2011
Manuscript Accepted: February 21, 2011
Published: March 10, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Mangirdas Malinauskas, Paulius Danilevičius, and Saulius Juodkazis, "Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses," Opt. Express 19, 5602-5610 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997). [CrossRef]
  2. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010). [CrossRef]
  3. M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009). [CrossRef]
  4. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009). [CrossRef]
  5. A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra 40, 72–80 (2006).
  6. F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong, “Polymerized nanotips via two-photon photopolymerization,” Opt. Express 15, 971–976 (2007). [CrossRef] [PubMed]
  7. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846–849 (2005). [CrossRef]
  8. I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100, 359–364 (2010). [CrossRef]
  9. R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7, 1083–1098 (2005). [CrossRef]
  10. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7, 967–974 (2011). [CrossRef]
  11. M. Malinauskas and V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuringover a large area on various substrates,” Proc. SPIE 7715, 77157F–1 (2010).
  12. M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010). [CrossRef]
  13. A. Ovsianikov and A. Gaidukevičiūtė, B. N. Chichkov, M . Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem. 2008, 493059 (2008). [CrossRef]
  14. M. Malinauskas and H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12, 035204 (2010). [CrossRef]
  15. C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010). [CrossRef]
  16. A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007). [CrossRef]
  17. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000). [CrossRef]
  18. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with low-cost microlaser,” Opt. Lett. 27, 1348–1350 (2002). [CrossRef]
  19. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010). [CrossRef]
  20. A. Pikulin and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).
  21. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of threedimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010). [CrossRef] [PubMed]
  22. S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express 17, 15308–15317 (2009). [CrossRef] [PubMed]
  23. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76, 257–260 (2003). [CrossRef]
  24. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2009). [CrossRef]
  25. M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, “Three-dimensional modeling of the heataffected zone in laser machining applications,” Laser Chem. 2008, 976205 (2008). [CrossRef]
  26. N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008). [CrossRef]
  27. M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Banares, “Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses,” Opt. Express 19, 1516–1527 (2011). [CrossRef] [PubMed]
  28. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003). [CrossRef]
  29. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008). [CrossRef]
  30. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009). [CrossRef] [PubMed]
  31. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005). [CrossRef] [PubMed]
  32. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005). [CrossRef] [PubMed]
  33. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. T¨unnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009). [CrossRef]
  34. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 3 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited