OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5658–5669

Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap

Thiago P. Mayer Alegre, Amir Safavi-Naeini, Martin Winger, and Oskar Painter  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5658-5669 (2011)
http://dx.doi.org/10.1364/OE.19.005658


View Full Text Article

Enhanced HTML    Acrobat PDF (3390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fully planar two-dimensional optomechanical crystal formed in a silicon microchip is used to create a structure devoid of phonons in the GHz frequency range. A nanoscale photonic crystal cavity is placed inside the phononic bandgap crystal in order to probe the properties of the localized acoustic modes. By studying the trends in mechanical damping, mode density, and optomechanical coupling strength of the acoustic resonances over an array of structures with varying geometric properties, clear evidence of a complete phononic bandgap is shown.

© 2011 Optical Society of America

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(230.1040) Optical devices : Acousto-optical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: December 21, 2010
Revised Manuscript: February 21, 2011
Manuscript Accepted: February 22, 2011
Published: March 11, 2011

Citation
Thiago P. Mayer Alegre, Amir Safavi-Naeini, Martin Winger, and Oskar Painter, "Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap," Opt. Express 19, 5658-5669 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5658


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally Resonant Sonic Materials,” Science 289(5485), 1734–1736 (2000). [CrossRef] [PubMed]
  2. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Ultrasound Tunneling through 3D Phononic Crystals,” Phys. Rev. Lett. 88(10), 104301 (2002). [CrossRef] [PubMed]
  3. W. Cheng, J. Wang, U. Jonas, G. Fytas, and N. Stefanou, “Observation and tuning of hypersonic bandgaps in colloidal crystals,” Nat. Mater. 5(10), 830–836 (2006). [CrossRef] [PubMed]
  4. A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic Modulation of Light in Three-Dimensional Photonic and Phononic Band-Gap Materials,” Phys. Rev. Lett. 101(3), 033902 (2008). [CrossRef] [PubMed]
  5. T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic Phononic Crystals,” Phys. Rev. Lett. 94(11), 115501 (2005). [CrossRef] [PubMed]
  6. S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a twodimensional phononic crystal slab,” Appl. Phys. Lett. 94(5), 051906 (2009). [CrossRef]
  7. Y. Wen, J. Sun, C. Dais, D. Grtzmacher, T. Wu, J. Shi, and C. Sun, “Three-dimensional phononic nanocrystal composed of ordered quantum dots,” Appl. Phys. Lett. 96(12), 123113 (2010). [CrossRef]
  8. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of Sound in a 3D Phononic Crystal,” Phys. Rev. Lett. 93(2), 024301 (2004). [CrossRef] [PubMed]
  9. J. Gaofeng and S. Zhifei, “A new seismic isolation system and its feasibility study,” Earthq. Eng. Eng. Vib. 9(1), 75–82 (2010). [CrossRef]
  10. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]
  11. M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006). [CrossRef]
  12. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009). [CrossRef] [PubMed]
  13. S. Mohammadi, A. A. Eftekhar, A. Khelif, and A. Adibi, “Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs,” Opt. Express 18(9), 9164–9172 (2010). [CrossRef] [PubMed]
  14. A. H. Safavi-Naeini and O. Painter, “Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab,” Opt. Express 18(14), 14926–14943 (2010). [CrossRef] [PubMed]
  15. Y. Pennec, B. D. Rouhani, E. H. El Boudouti, C. Li, Y. El Hassouani, J. O. Vasseur, N. Papanikolaou, S. Benchabane, V. Laude, and A. Martinez, “Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs,” Opt. Express 18(13), 14301–14310 (2010). [CrossRef] [PubMed]
  16. D. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” arXiv:1006.3829 (2010).
  17. A. H. Safavi-Naeini and O. Painter, “Proposal for an Optomechanical Traveling Wave Phonon-Photon Translator,” N. J. Phys. 13, 013017 (2011). [CrossRef]
  18. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22(276), 276–278 (1973). [CrossRef]
  19. X. Zhang, R. Sooryakumar, and K. Bussmann, “Confinement and transverse standing acoustic resonances in free-standing membranes,” Phys. Rev. B 68, 115430 (2003). [CrossRef]
  20. W. Cheng, N. Gomopoulos, G. Fytas, T. Gorishnyy, J. Walish, E. L. Thomas, A. Hiltner, and E. Bae, “Phonon Dispersion and Nanomechanical Properties of Periodic 1D Multilayer Polymer Films,” Nano Lett. 8(5), 1423–1428 (2008). [CrossRef] [PubMed]
  21. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95(3), 033,901–033,901 (2005). [CrossRef]
  22. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical Oscillation and Cooling Actuated by the Optical Gradient Force,” Phys. Rev. Lett. 103(10), 103601 (2009). [CrossRef] [PubMed]
  23. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  24. G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. S. J. Russell, “Coherent Control of Ultrahigh-Frequency Acoustic Resonances in Photonic Crystal Fibers,” Phys. Rev. Lett. 100(20), 203903 (2008). [CrossRef] [PubMed]
  25. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76(6), 061101–061101 (2005). [CrossRef]
  26. C. T. C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 251–270 (2007). [CrossRef] [PubMed]
  27. H. Campanella, Acoustic Wave and Electromechanical Resonators: Concept to Key Applications (Artech House Publishers, 2010).
  28. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  29. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131,114–3 (2006). [CrossRef]
  30. COMSOL Multphysics 3.5 (2009).
  31. A. Akhieser, J. Phys. (Moscow) 1, 277 (1939).
  32. L. Landau and G. Rumer, “Absorption of sound in solids,” Phys. Z. Sowjetunion 11, 18 (1937).
  33. C. Zener, “Internal Friction in Solids II. General Theory of Thermoelastic Internal Friction,” Phys. Rev. 53(1), 90 (1938). [CrossRef]
  34. S. D. Lambade, G. G. Sahasrabudhe, and S. Rajagopalan, “Temperature dependence of acoustic attenuation in silicon,” Phys. Rev. B 51(22), 15,861 (1995). [CrossRef]
  35. C. Zener, “Internal Friction in Solids. I. Theory of Internal Friction in Reeds,” Phys. Rev. 52(3), 230 (1937). [CrossRef]
  36. R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems,” Phys. Rev. B 61(8), 5600 (2000). [CrossRef]
  37. T. O. Woodruff and H. Ehrenreich, “Absorption of Sound in Insulators,” Phys. Rev. 123(5), 1553 (1961). [CrossRef]
  38. J. Philip and M. A. Breazeale, “Third-order elastic constants and Gr¨uneisen parameters of silicon and germanium between 3 and 300 K,” J. Appl. Phys. 54(2), 752 (1983). [CrossRef]
  39. S. K. Estreicher, M. Sanati, D. West, and F. Ruymgaart, “Thermodynamics of impurities in semiconductors,” Phys. Rev. B 70(12), 125209 (2004). [CrossRef]
  40. A. Duwel, R. Candler, T. Kenny, and M. Varghese, “Engineering MEMS Resonators With Low Thermoelastic Damping,” J. Microelectromech. Syst. 15(6), 1437–1445 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited