OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 5741–5752

Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers

Burak Ozbey and Ozgur Aktas  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 5741-5752 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz metamaterial structures that employ flexing microelectromechanical cantilevers for tuning the resonance frequency of an electric split-ring resonator are presented. The tuning cantilevers are coated with a magnetic thin-film and are actuated by an external magnetic field. The use of cantilevers enables continuous tuning of the resonance frequency over a large frequency range. The use of an externally applied magnetic field for actuation simplifies the metamaterial structure and its use for sensor or filter applications. A structure for minimizing the actuating field is derived. The dependence of the tunable bandwidth on frequency is discussed.

© 2011 OSA

OCIS Codes
(040.1880) Detectors : Detection
(070.4790) Fourier optics and signal processing : Spectrum analysis
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: December 20, 2010
Revised Manuscript: February 24, 2011
Manuscript Accepted: February 24, 2011
Published: March 14, 2011

Burak Ozbey and Ozgur Aktas, "Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers," Opt. Express 19, 5741-5752 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  2. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  5. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004). [CrossRef] [PubMed]
  6. Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of negative refraction imaging in both amplitude and phase,” Opt. Express 13(6), 2007–2012 (2005). [CrossRef] [PubMed]
  7. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007). [CrossRef] [PubMed]
  8. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006). [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  11. N. Engheta, and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley Interscience, 2006).
  12. C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008). [CrossRef]
  13. W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photon. J. 1(2), 99–118 (2009). [CrossRef]
  14. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007). [CrossRef]
  15. S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009). [CrossRef]
  16. I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94(15), 153505 (2009). [CrossRef]
  17. S. P. Mickan, A. Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, “Label-free bioaffinity detection using terahertz technology,” Phys. Med. Biol. 47(21), 3789–3795 (2002). [CrossRef] [PubMed]
  18. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  19. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002). [CrossRef]
  20. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007). [CrossRef]
  21. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  22. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008). [CrossRef]
  23. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  24. W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009). [CrossRef]
  25. Y. H. Yuan, J. A. He, J. S. Liu, and J. Q. Yao, “Proposal of an electrically controlled terahertz switch based on liquid-crystal-filled dual-metallic grating structures,” Appl. Opt. 49(31), 6092–6097 (2010). [CrossRef]
  26. W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling,” Appl. Phys. Lett. 96(26), 261908 (2010). [CrossRef]
  27. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009). [CrossRef] [PubMed]
  28. B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. A. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010). [CrossRef] [PubMed]
  29. G. H. He, R. X. Wu, Y. Poo, and P. Chen, “Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh,” J. Appl. Phys. 107(9), 093522–093527 (2010). [CrossRef]
  30. E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17(18), 16046–16058 (2009). [CrossRef] [PubMed]
  31. G.T.A. Kovacs, Micromachined Transducers Sourcebook (McGraw-Hill 1998).
  32. C. Liu and Y. W. Li, “Micromachined magnetic actuators using electroplated permalloy,” IEEE Trans. Magn. 35(3), 1976–1985 (1999). [CrossRef]
  33. W. P. Taylor, O. Brand, and M. G. Allen, “Fully integrated magnetically actuated micromachined relays,” J. Microelectromech. Syst. 7(2), 181–191 (1998). [CrossRef]
  34. Y. H. Zhang, G. F. Ding, H. Wang, S. Fu, and B. C. Cai, “Low-stress permalloy for magnetic MEMS switches,” IEEE T. Magn. 42(1), 51–55 (2006). [CrossRef]
  35. S. Guan and B. J. Nelson, “Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators,” J. Magn. Magn. Mater. 292, 49–58 (2005). [CrossRef]
  36. D. P. Arnold and N. G. Wang, “Permanent Magnets for MEMS,” J. Microelectromech. Syst. 18(6), 1255–1266 (2009). [CrossRef]
  37. Computer Simulation Technology, http://www.cst.com
  38. H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007). [CrossRef] [PubMed]
  39. F.P. Beer, E.R. Johnston Jr., J.T. DeWolf, D. Mazurek, Mechanics of Materials (McGraw-Hill 2009).
  40. W. N. Sharpe, “Mechanical properties of MEMS materials,” in Proceedings of IEEE Semiconductor Device Research Symposium (IEEE 2001), pp. 416–417.
  41. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119–011193 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited