OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 5760–5771

Visualization of the birth of an optical vortex using diffraction from a triangular aperture

A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, and E. M. Wright  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 5760-5771 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The study and application of optical vortices have gained significant prominence over the last two decades. An interesting challenge remains the determination of the azimuthal index (topological charge) of an optical vortex beam for a range of applications. We explore the diffraction of such beams from a triangular aperture and observe that the form of the resultant diffraction pattern is dependent upon both the magnitude and sign of the azimuthal index and this is valid for both monochromatic and broadband light fields. For the first time we demonstrate that this behavior is related not only to the azimuthal index but crucially the Gouy phase component of the incident beam. In particular, we explore the far field diffraction pattern for incident fields incident upon a triangular aperture possessing non-integer values of the azimuthal index . Such fields have a complex vortex structure. We are able to infer the birth of a vortex which occurs at half-integer values of and explore its evolution by observations of the diffraction pattern. These results demonstrate the extended versatility of a triangular aperture for the study of optical vortices.

© 2011 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(140.3300) Lasers and laser optics : Laser beam shaping
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: December 23, 2010
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 15, 2011
Published: March 14, 2011

A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, and E. M. Wright, "Visualization of the birth of an optical vortex using diffraction from a triangular aperture," Opt. Express 19, 5760-5771 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  2. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336, 165–190 (1974). [CrossRef]
  3. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinszstein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  4. K. Dholakia and W. M. Lee, “Optical trapping takes shape: the use of structured light fields,” Adv. At. Mol. Phys. 56, 261–337 (2008).
  5. V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003). [CrossRef] [PubMed]
  6. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002). [CrossRef]
  7. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88, 013601 (2001). [CrossRef]
  8. H. I. Sztul and R. R. Alfano, “Double-slit interference with Laguerre-Gaussian beams,” Opt. Lett. 31, 999–1001 (2006). [CrossRef] [PubMed]
  9. C. S. Guo, L. L. Lu, and H. T. Wang, “Characterizing topological charge of optical vortices by using an annular aperture,” Opt. Lett. 34, 3686–3688 (2009). [CrossRef] [PubMed]
  10. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010). [CrossRef] [PubMed]
  11. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95, 240501 (2005). [CrossRef] [PubMed]
  12. I. V. Basistiy, M. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995). [CrossRef]
  13. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6, 259–268 (2004). [CrossRef]
  14. W. M. Lee, X. C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239, 129–135 (2004). [CrossRef]
  15. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004). [CrossRef]
  16. R. C. Smith and J. S. Marsh, “Diffraction patterns of simple apertures,” J. Opt. Soc. Am. 64, 798–803 (1974). [CrossRef]
  17. See, for example,A. E. Siegman, Lasers (University Science, 2004), Chap. 16.4.
  18. J. Arlt, “Handedness and azimuthal energy flow of optical vortex beams,” J. Mod. Opt. 50, 1573–1580 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (661 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited