OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 5802–5810

Sculpturing of photonic crystals by ion beam lithography: towards complete photonic bandgap at visible wavelengths

Saulius Juodkazis, Lorenzo Rosa, Sven Bauerdick, Lloyd Peto, Ramy El-Ganainy, and Sajeev John  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 5802-5810 (2011)
http://dx.doi.org/10.1364/OE.19.005802


View Full Text Article

Enhanced HTML    Acrobat PDF (1613 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three dimensional (3D) ion beam lithography (IBL) is used to directly pattern 3D photonic crystal (PhC) structures in crystalline titania. The process is maskless and direct write. The slanted pore 3D structures with pore diameters of 100 nm having aspect ratio of 8 were formed. It is shown that chemical enhancement of titania removal up to 5.2 times is possible in XeF2 gas for the closest nozzle-to-sample distance; the enhancement was ∼ 1.5 times for the actual 3D patterning due to a sample tilt. Tolerances of structural parameters and optimization of IBL processing required for the fabrication of PhCs with full photonic bandgap in visible spectral range in rutile are outlined. Application potential of 3D-IBL is discussed.

© 2011 OSA

OCIS Codes
(350.3850) Other areas of optics : Materials processing
(160.1245) Materials : Artificially engineered materials
(160.4236) Materials : Nanomaterials
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Photonic Crystals

History
Original Manuscript: January 12, 2011
Revised Manuscript: March 1, 2011
Manuscript Accepted: March 4, 2011
Published: March 14, 2011

Citation
Saulius Juodkazis, Lorenzo Rosa, Sven Bauerdick, Lloyd Peto, Ramy El-Ganainy, and Sajeev John, "Sculpturing of photonic crystals by ion beam lithography: towards complete photonic bandgap at visible wavelengths," Opt. Express 19, 5802-5810 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-5802


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. S. John, “Loalization of light: theory of photonic band gap materials,” in Photonic band gap materials , C. Sokoulis, ed. (Kluwer, The Netherlands, 1996).
  4. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  5. S. Johnson and J. D. Joannopoulos, Photonic crystals: The Road From Theory to Practice (Kluwer, Dordrecht, The Netherlands, 2002).
  6. T. F. Krauss and R. M. de La Rue, “Photonic crystals in the optical regime - past, present and future,” Prog. Quantum Electron . 23, 51–96 (1999). [CrossRef]
  7. S. Kitson, W. Barnes, and J. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 2670–2673 (1996). [CrossRef] [PubMed]
  8. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–40 (2000). [CrossRef] [PubMed]
  9. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. 10, 283–295 (1993). [CrossRef]
  10. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photon . 5, 91–94 (2011). [CrossRef]
  11. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2005). [CrossRef]
  12. K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Selec. Topics Quant Electr. 14, 1064–1073 (2008). [CrossRef]
  13. F. B. McCormick, J. G. Fleming, S. Mani, M. R. Tuck, J. D. Williams, C. L. Arrington, S. H. Kravitz, C. Schmidt, G. Subramania, J. C. Verley, A. R. Ellis, I. El-kady, D. W. Peters, M. W. W. C. Sweatt, and J. J. Hudgens, “Fabrication and characterization of large-area 3-D photonic crystals,” in IEEE Aerospace Conf. Proc. , 1820–1827 (2006).
  14. J. Schilling and A. Scherer, “3D photonic crystals based on macroporous silicon: Towards a large complete photonic bandgap,” Photon. Nanostr.: Fund. and Appl. 3, 90–95 (2005). [CrossRef]
  15. G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths,” Adv. Mater. 22, 487–491 (2010). [CrossRef] [PubMed]
  16. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007). [CrossRef]
  17. T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys. A 81, 1583–1586 (2005). [CrossRef]
  18. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnol. 16, 846–849 (2005). [CrossRef]
  19. O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005). [CrossRef]
  20. J. Winkler, Titanium dioxide (Vincentz Network, Hannover, 2003).
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  22. T. Dai, X. Kang, B. Zhang, J. Xu, K. Bao, C. Xiong, and Z. H. Gan, “Study and formation of 2D microstructures of sapphire by focused ion beam milling,” Microelectr. Eng. 85, 640–645 (2008). [CrossRef]
  23. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009). [CrossRef] [PubMed]
  24. L. Tang and T. Yoshie, “Woodpile photonic crystal fabricated in GaAs by two-directional etching method,” J. Vac. Sci. Technol. B 28, 301–303 (2010). [CrossRef]
  25. A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003). [CrossRef] [PubMed]
  26. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. B 78, 023825 (2008).
  27. S. John and R. Z. Wang, “Metallic photonic-band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78, 043809 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited