OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 5868–5873

Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity

Irina V. Kabakova, Dan Grobnic, Stephen Mihailov, Eric C. Mägi, C. Martijn de Sterke, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 5868-5873 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first experimental demonstration of Bragg grating-based nonlinear switching in a bismuth-oxide single-mode fiber. Exploiting the strong χ(3)-nonlinearity of this fiber in a cross-phase modulation scheme, we change the transmission of a probe near the grating stop band from 90 % to 20 %, a 6.5 dB extinction ratio, at powers as low as 55 W. This is an 18-fold improvement in the switching power compared to the best demonstrations in silica. The experimental results agree well with numerical simulations.

© 2011 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 10, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 4, 2011
Published: March 15, 2011

Irina V. Kabakova, Dan Grobnic, Stephen Mihailov, Eric C. Mägi, C. Martijn de Sterke, and Benjamin J. Eggleton, "Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity," Opt. Express 19, 5868-5873 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Slusher and B. J. Eggleton, Nonlinear photonic crystals , chapter 1 (Springer-Verlag, 2003).
  2. A. E. Bieber, T. G. Brown, and R. C. Tiberio, “Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors,” Opt. Lett. 20, 2216–2218 (1995). [CrossRef] [PubMed]
  3. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg grating,” J. Opt. Soc. Am. B 14, 2980–2993 (1997). [CrossRef]
  4. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming, “All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 259–261 (1998). [CrossRef]
  5. N. G. R. Broderick, D. J. Richardson, and M. Ibsen, “Nonlinear switching in a 20-cm fiber Bragg grating,” Optics Lett. 25, 536–538 (2000). [CrossRef]
  6. I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 16, 5083–5089 (2009). [CrossRef]
  7. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994). [CrossRef] [PubMed]
  8. S. Larochelle, Y. Hibino, V. Mizrahi, and G.I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990). [CrossRef]
  9. R. Kashyap, Fiber Bragg Gratings (San Diego, CA: Academic, 1999).
  10. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” Photon. Tech. Lett. 12, 42–44 (2000). [CrossRef]
  11. I. V. Kabakova, C. M. de Sterke, and B. J. Eggleton “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27, 1343–1352 (2010). [CrossRef]
  12. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992). [CrossRef]
  13. P. Millar, R. M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in an AlGaAs Bragg grating filter,” Opt. Lett. 24, 685–687 (1999). [CrossRef]
  14. H. C. Nguyen, D.-I. Yeom, E. C. Magi, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear switching using long-period gratings in As2Se3 chalcogenide fiber,” J. Opt. Soc. Am. B 25, 1393–1401 (2008). [CrossRef]
  15. N. Sugimoto, H. Kanbara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response on Bi2O3 - B2O3 - SiO2 glasses,” J. Opt. Soc. Am. B 16, 1904–1908 (1999). [CrossRef]
  16. K. Kikuchi, K. Taira, and N. Sugimoto,“Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002). [CrossRef]
  17. F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14, 5038–5044 (2006). [CrossRef] [PubMed]
  18. J. T. Gopinath, H. M. Shen, H. Sotobayashl, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 μm,” Opt. Express 12, 5697 (2004). [CrossRef] [PubMed]
  19. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005). [CrossRef] [PubMed]
  20. P. Bakopoulos, O. Zouraraki, K Vyrsokinos, and H. Avramopoulos, “2x2 Echange/Bypass Switch Using 0.8 m of Highly Nonlinear Bismuth Oxide Fiber,” IEEE Photon. Tech. Lett. 19, 723–725 (2007). [CrossRef]
  21. D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg Gratings Made in Highly Nonlinear Bismuth Oxide Fibers With Ultrafast IR Radiation,” IEEE Photon. Techn. Lett. 22, 124–126, (2010). [CrossRef]
  22. J. Lauzon, S. Larochelle, and F. Ouelette, “Numerical analysis of all-optical switching of a fiber Bragg grating induced by a short-detuned pump pulse,” Opt. Commun. 92, 233–239 (1992). [CrossRef]
  23. I. C. M. Littler, T. Grujic, and B. J. Eggleton, “Photothermal effects in fiber Bragg gratings,” Appl. Opt. 45, 4679–4685 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited