OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 5888–5894

Active control over nanofocusing with nanorod plasmonic antennas

Ivan S. Maksymov and Andrey E. Miroshnichenko  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 5888-5894 (2011)
http://dx.doi.org/10.1364/OE.19.005888


View Full Text Article

Enhanced HTML    Acrobat PDF (1363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Active control over light nanofocusing in a nanorod plasmonic antenna coupled to a photonic crystal cavity is proposed and demonstrated by means of full-vectorial 3D simulations. By varying the excitation of the cavity with laser beam spot size allows us to achieve a gradual control over light nanofocusing at the tip of the nanoantenna. The demonstrated control mechanism eliminates the need for nonlinear effects or mechanical reconfiguration and represents a step towards the implementation of reliable tunable subwavelength light sources.

© 2011 OSA

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(050.5298) Diffraction and gratings : Photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 13, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 5, 2011
Published: March 15, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Ivan S. Maksymov and Andrey E. Miroshnichenko, "Active control over nanofocusing with nanorod plasmonic antennas," Opt. Express 19, 5888-5894 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-5888


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon . 1, 438–483 (2009). [CrossRef]
  2. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  3. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef] [PubMed]
  4. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).
  5. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010). [CrossRef] [PubMed]
  6. I. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010). [CrossRef]
  7. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne“Enhancement of single-molecule fluorescence detection in subwavelength apertures,”Phys. Rev. Lett. 95, 117401 (2005). [CrossRef] [PubMed]
  8. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field espotnhancement,” Nature (London) 453, 757–760 (2008). [CrossRef]
  9. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller“Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,”Nat. Photonics 2, 226–229 (2008). [CrossRef]
  10. F. de Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008). [CrossRef] [PubMed]
  11. F. Zhou, Y. Liu, Z.-Y. Li, and Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18, 13337–13344 (2010), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-18-13-13337 . [CrossRef] [PubMed]
  12. Y. Chen, P. Lodhal, and A. F. Koenderink, “Dynamically reconfigurable directionality of plasmon-based single photon sources,” Phys. Rev. B 82, 081402(R) (2010).
  13. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009). [CrossRef]
  14. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057404 (2006). [CrossRef]
  15. O. L. Muskens, N. Del Fatti, and F. Vallée, “Femtosecond response of a single metal nanoparticle,” Nano Lett. 6, 552–556 (2006). [CrossRef] [PubMed]
  16. V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field ′ enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18, 2797–2807 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-3-2797 . [CrossRef] [PubMed]
  17. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  18. A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  19. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Ligth scattering and Fano resonances in high-Q photonic crystal cavities,” Appl. Phys. Lett. 94, 071101 (2009). [CrossRef]
  20. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010). [CrossRef] [PubMed]
  21. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18, 14079–14086 (2010), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-18-13-14079 . [CrossRef] [PubMed]
  22. F. de Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5, 67–72 (2010). [CrossRef]
  23. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  24. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1985).
  25. M. Belotti, J. F. Galisteo López, S. De Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16, 11624–11636 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11624 . [PubMed]
  26. N.-C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited