OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 5902–5911

Image formation in CARS microscopy: effect of the Gouy phase shift

K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 5902-5911 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Image formation in Coherent Anti-Stokes Raman Scattering (CARS) microscopy of sub-wavelength objects is investigated via a combined experimental, numerical and theoretical study. We consider a resonant spherical object in the presence of a nonresonant background, using tightly focused laser pulses. When the object is translated along the laser propagation axis, we find the CARS signal to be asymmetric about the laser focal plane. When the object is located before the focus, there is a distinct shadow within the image, whereas the brightest signal is obtained when the object is behind the focus. This behaviour is caused by interference between resonant and nonresonant signals, and the Gouy phase shift is responsible for the observed asymmetry within the image.

© 2011 Optical Society of America

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: February 3, 2011
Revised Manuscript: February 28, 2011
Manuscript Accepted: March 1, 2011
Published: March 15, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, "Image formation in CARS microscopy: effect of the Gouy phase shift," Opt. Express 19, 5902-5911 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  2. J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108, 827–840 (2004). [CrossRef]
  3. C. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008). [CrossRef]
  4. E. O. Potma and X. S. Xie, “Theory of Spontaneous and Coherent Raman scattering,” in Handbook of Biological Nonlinear Optical Microscopy, B. R. Masters and P. T. C. So, eds. (Oxford University Press, 2008), pp. 164–185.
  5. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352 (1982). [CrossRef] [PubMed]
  6. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005). [CrossRef] [PubMed]
  7. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17, 2984–2996 (2009). [CrossRef] [PubMed]
  8. M. Rivard, M. Laliberté, A. Bertrand-Grenier, C. Harnagea, C. P. Pfeffer, M. Valliéres, Y. St-Pierre, A. Pignolet, M. A. El Khakani, and F. Légaré, “The structural origin of second harmonic generation in fascia,” Biomed. Opt. Express 2, 26–36 (2011). [CrossRef] [PubMed]
  9. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterisation of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002). [CrossRef]
  10. A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1, 1347–1357 (2010). [CrossRef]
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd ed. (Artech House, 2005), pp. 58–79.
  12. M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-Order FDTD and Auxiliary Differential Equation Formulation of Optical Pulse Propagation in 2-D Kerr and Raman Nonlinear Dispersive Media,” IEEE J. Quantum Electron. 40, 175–182 (2004). [CrossRef]
  13. K. I. Popov, C. McElcheran, K. Briggs, S. Mack, and L. Ramunno, “Morphology of femtosecond laser modification of bulk dielectrics,” Opt. Express 19, 271–282 (2011). [CrossRef] [PubMed]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd. ed. (Artech House, 2005), pp. 186–212.
  15. G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981). [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics, 3rd ed. (Artech House, 2005), pp. 329–343.
  17. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003), p. 194.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited